
GPU-based explicit time evolution method
Jiarui Fang*, Haohuan Fu and Guangwen Yang, Tsinghua University

Wei Wu and Nanxun Dai, CNPC

Summary

Finite-difference (FD) methods have long been among the

most popular solutions for RTM and FWI. Compared with

FD methods, the Explicit Time Evolution (ETE) method is

able to simulate the wave propagation in acoustic media

with higher spatial and temporal accuracy, at the cost of a

more complicated memory access pattern. Similar to FD,

ETE performs a stencil operation on every grid point,

except that the coefficients of the stencil change spatially

with the velocity parameter of that position. While FD

methods already have highly-efficient designs on GPU

platforms, in ETE, the sharp velocity discontinuities can

result in un-coalesced memory access patterns. Moreover,

the increased number of involved off-axis points in the

stencil and the increased number of different coefficients

bring more pressure for the fast buffers and memory in the

GPU. To solve these issues, in this paper, we decompose

the complex stencil into a number of sub-components, so as

to form a better memory access pattern for coefficients and

to simplify the calculation of stencil operations. Finally, we

combine the decomposition scheme with 2.5D spatial and

1D temporal blocking optimizations. With one K20 GPU

card, we manage to achieve 5.5x speedup compared against

12 cores Intel E5- E5645 CPU.

Introduction

The finite-difference (FD) method is one of the most

popular waveform modeling methods used in RTM and

FWI. The spatial derivatives of FD are often approximated

in higher order whereas the temporal derivatives are usually

approximated in 2nd order. As a consequence, the FD

method often suffers from low temporal accuracy.

Compared to the FD method, FFT-based methods can

achieve higher accuracy. Nevertheless, the computational

cost of multi-dimensional Fourier transforms in each time

step is more expensive than the FD method. Another

drawback for such methods is that additional treatments are

needed to suppress the wrap-around effect caused by the

periodic source assumption. The Explicit Time Evolution

(ETE) method (Liu et al., 2014) can achieve high spatial

and temporal accuracy in acoustic media without using

Fourier transforms. By adopting a FD-style operator in the

discrete spatial-time domain to explicitly extrapolate

wavefields in time, the ETE method achieves spectral-like

accuracy by optimizing the spatial operator to fit an

analytical counterpart in the wavenumber domain. The

disadvantage of the ETE method is that coefficients of

stencil points vary over the velocities of center points. In

implementation, a coefficient matrix and an array of

velocity parameters are required to be maintained in

memory.

In recent years, GPU has become a popular parallel

platform to accelerate FD methods for seismic computing.

However, an efficient solution for ETE method has not

been proposed on GPU. It is mainly because the sharp

velocity discontinuities can result in un-coalesced memory

access patterns. As a result, when calculating the stencil for

a point, neighbor GPU threads need to perform un-

coalesced accesses to the global memory to load the ETE

coefficients, which bring significant performance damages.

Similar challenges also exist in a variety of FD-like

methods, such as (Liu, 2013; Wang et al., 2014; Tan et al.,

2014).

To solve the above issues, in this paper, we proposed a

highly-efficient method to implement the 8th-order 3D

ETE stencil on GPU. We avoid the un-coalesced accesses

to coefficients by decomposing the original stencil into 3

small stencils. Thus, most of coefficients are able to be

stored in on-chip fast buffer on GPU. As a result, we

conduct 3 GPU kernels to sweep through the spatial grid. A

2.5D spatial blocking and 1D temporal blocking strategies

are also applied to further reduce the memory access time.

When processing ETE-based RTM or FWI jobs, our GPU-

based scheme can improve the processing capability of

each single node by 5.5 times when compared against 12

CPU cores. Using our proposed GPU-based ETE design,

the practical RTM processing time for one shot on a single

node can be reduced from 1.38 hours one shot to 15

minutes, making ETE a favorable design in many cases.

The ETE method

The acoustic wave equation in the time-wavenumber

domain assuming a constant velocity is presented as

follows:

 
 

2
22

2

ˆ
ˆ

,
,

d p t
v p t

dt
 

k
k k . (1)

The analytical solution of equation (1) is as follows:

     ˆ , 2cos ˆ ˆ(,) ,k k kp t t v t p t p t t      k (2)

For variable velocities, we consider velocity v as a “local

constant” and convert equation (2) to the time-space

domain:

       , 2 | * , ,p t t c v t p t p t t     x x x x (3)

A GPU-based explicit time evolution method for wave propagation

Where  |c v tx is a spatially variable 2D or 3D filter

corresponding to cos(| |)v t k in the wavenumber domain

and * denotes a spatial convolution.

An explicit time evolution (ETE) operator for wavefield

simulation based on equation (3) is formulated in a discrete

space. For a selected stencil in a neighborhood of any given

point in the space domain, we seek coefficients that

minimize the difference between their discrete Fourier

Transform and cos(| |)v t k in the wavenumber domain.

The accuracy of the time evolution of the wavefield will be

solely determined by the fitting of the cosine function at

each wavenumber. We seek cj, the coefficients of each

stencil point, in least square sense:

  
2

 MIN cos

j

i

j
c

j

c e v t

 

x k
xj k (4)

where x x x  j j is the distance vector from updating

point to a stencil point. Once the coefficients cj are

determined, the ETE operator application to wavefield

simulation is similar to FD schemes, as described in the

following formula:

     
1

, 2 (,) , .x x x x
eN

j j

j

p t t c p x t p t t


        (5)

As for the shape of ETE stencil, it has been proven that

adding off-axial points can significantly reduce the misfit.

A stencil including off-axial stencil points with minimal

distances to the center appears to be optimal to reduce the

misfit of cosine function. However these points increase the

complexity of stencil, which bring challenge to implement

ETE on GPU. According to ETE design, an 8th-order 3D

ETE Stencil is optimum in real application, as is shown in

Figure 1. The stencil operation involves 37 nearest

neighboring points on a spatial grid. The ETE stencil

sweeps through the entire 3D grid multiple times to update

each grid point with calculations involving its nearest

neighbors. The updating rule for one time sweep is

indicated in equation (5).

Figure 1. The shape of 8th-order

ETE stencil can sufficiently reduce the fitting error to a

magnitude of 10-6. In an 8th order ETE scheme, ETE

operator contains 37 points while FD operator contains 25

in 3D. Numerical experiments indicate, however, that in

order to achieve similar accuracy the FD scheme requires

time steps about five times as fine as does ETE. Therefore,

ETE operator is superior to the traditional FD scheme in

terms of accuracy and overall performance (Dai et al.,

2014).

GPU optimizations for ETE

It is noticeable that there is significant data reuse of points

in current grid p(t) across their spatial neighbors. With

spatial blocking, a chunk of data in 3D gird can be loaded

into the fast buffers of GPU architectures to be reused for

computations. However, since the fast buffers available per

multi-processor are not sufficient to store the entire 3D

subdomain of the problem, as is shown in Figure 2, a 2.5D

blocking scheme (Nguyen, 2010) is taken to increase the

data locality. 2.5D spatial blocking blocks in two dimen-

sions and streams through the third dimension. When

implemented on GPU, points along the third dimension are

assigned to one thread to perform stencil operations.

Registers and shared memory, from which the latency of

data fetching is two orders of magnitude lower than that of

global memory, serve as fast buffers on GPU. These fast

buffers can only be shared with threads in same block.

Only a few layers of planes in current grid are required to

be cached in fast buffer for calculating one result plane of

next gird. We stream through the third dimension to

perform stencil operations plane by plane.

R

R

Top view of a block
Figure 2. A 2.5D blocking of 3D grid streaming through axis z.

x ydim dim is size of xy-plane in one block. R is size of boundary.

Different from FD stencil, the coefficients of each stencil

point are not a constant value. The coefficients for different

velocities are calculated before spatial sweeps of ETE

stencil using the least-square method. A 2D coefficient

matrix and a 3D coefficient index array have to be stored in

the GPU global memory before the sweeps. For the

coefficient matrix (c in equation (5)), the number of rows is

eN (the number of spatial points involved in the stencil),

and the number of columns is the number of different

discretized velocities that we use to calculate the ETE

coefficients in the model. The size of the index array is the

same as the grid size, which is nx ny nz  . When

conducting the stencil operation, a thread first accesses the

coefficient index array according to its coordinate in the 3D

grid. The index determines which column to get the

coefficients for the
eN =37 neighboring points in the 8th

order 3D ETE stencil.

A GPU-based explicit time evolution method for wave propagation

The real geological structures usually come with sharp

velocity discontinuities. Such velocity distribution leads to

discontinuous accesses to the coefficient matrix, which

results in un-coalesced memory accesses of neighboring

threads on GPU. GPU devices provide a very high off-chip

memory bandwidth (up to 208 GB/sec), but this bandwidth

is only achievable with coalesced access. In another word,

data from the global memory is transferred to the GPU

device in contiguous blocks, and high bandwidth can only

be achieved when requests by concurrent 32 adjacent

threads fall within such contiguous blocks. When non-

continuous memory locations are accessed by threads, the

achieved bandwidth is much lower than the peak, leading to

stalling and wasted compute cycles.

To resolve the above issue, we propose to decompose the

ETE stencil into a number of sub-components, each of

which can perform independent scaling and sum

calculation to update the grid points with fewer rows of

matrix coefficients. By using such a decomposition scheme,

we can then fit the required coefficients into the shared

memory, and improve the memory access efficiency.

As for the 8th order ETE stencil, a decomposition scheme

is carefully designed. As shown in Figure. 3, sub-

component (a) is a 2D stencil on the xz-plane. We can

sweep the spatial grid along the y axis to perform a 2D

stencil operation. Sub-components (b) and (c) are with

same shape and are symmetric to the center point in

original stencil. When sweeping along z axis, only 2 points

on upper and lower xy-plane are required for stencil (b) and

(c). The corresponding rows of coefficient matrix can fit

into the shared memory. In stencil (a), the size of all

involved coefficients may be slightly beyond the shared

memory capacity. We store most of the coefficients in the

shared memory, and store the rest of them in the read-only

cache. An implementation of numerically equivalent ETE-

method is illustrated in Table 1.

(a) (b) (c)
Figure 3. Decomposition of 8th order-ETE stencil. The points in

same layer are with the same color.

Table 1. A stencil decomposition scheme for ETE method

Kernel 1

 Load c(x) of stencil (a) into shared memory and read-only

cache

     
(a)

, 2 (,) ,x x x x xj

j stencil

p t t c p t p t t


      j

Kernel 2
load c(x) of stencil (b) into shared memory

   
(b)

, 2 (,)x x x xj

j stencil

p t t c p t


      j

Kernel 3
load c(x) of stencil (c) into shared memory

   
(c)

, 2 (,)x x x xj

j stencil

p t t c p t


      j

3.5D spatial/temporal blocking implementation on GPU

Since sweeps of 3D grid will be executed for multiple time

steps, we can further combine the 2.5D spatial blocking

scheme with an additional 1D temporal blocking scheme by

executing 2 time steps of blocked data so that intermediate

data can reside in shared memory and registers. A 3.5D

scheme is applied to stencil (b) and stencil (c). Details of

the 3.5D implementation are illustrated in Figure 4. We

rearrange the temporal calculation order of xy-plane so that

the 3.5D ETE-stencil can work in pipeline. Each

calculation step, a xy-plane is loaded into fast buffer from

the grid of time step t and a xy-plane is written to the grid

of time step 2t t  . The grid points of time step t t are

stored in registers and shared memory on GPU. The xy-

planes of 3D grid are written to global memory every 2

time steps.

This scheme saves all global memory transfers to and from

gird ()p t t  , leaving one load and one store (eviction) for

two points updates. In addition, the coefficients of the 3.5D

scheme can be reused by 2 time steps in ETE. However, an

extra piece of shared memory is required in 3.5D scheme,

which reduces the available shared memory for coefficient

matrix.

1 2 4 7 10 13 16

Z=4 Z=5 Z=6 Z=7 Z=8 Z=9 Z=10

3 5 8 11 14 17

6 9 12 15 18

Keep in

Global

Memory

Keep in

Fast

buffer

Keep in

Global

Memory

T=0

T=1

T=2
XY Plane

shored in

registers

XY Plane

shored in

shared

memory

Figure 4. A snapshot of the 3.5D blocking scheme. At the current

calculation step, xy-plane with z = 6 at time step T = 2 is calculated.

(Numbers labeled in xy-planes illustrate the order of execution.
The Z at bottom indicates the z coordinate of xy-plane. The T on

the right demonstrates the time step of propagation.)

A GPU-based explicit time evolution method for wave propagation

Experiment results

We implemented ETE method on multi-core CPUs and

GPU in a 3D domain. Our GPU platform is a Tesla K20

card with driver version 6.5. Our CPU platform is a dual-

socket 12-core Intel Xeon E5-E5645 CPU. For our 3D

problem model, the dimension size on the z axis (nz) is set

to be 912. The dimension sizes on the x and y axes are kept

as 320. Our velocity model is a complete random

distribution of 902 different velocity values. The

performance of different optimization schemes is illustrated

in Figure 5. 12-core CPUs refers to a CPU implementation

with 12 cores sharing a common 48GB memory. We

carefully block the 3D domain for cache locality and apply

SIMD for achieving the best vectorized performance. The

performance on 12-core CPUs is 12.97GFlops. K20-naïve

refers to our straightforward implementation on GPU, with

coefficients read directly from the global memory. K20

(decomposition) refers to our improved design that

decomposes the stencil into 3 ones, most of whose

coefficients are loaded in shared memory initially. K20

(decomposition +3.5D) refers to our final design that uses

the 3.5D spatial and temporal blocking scheme, and

coefficients are accessed from shared memory. We can

obtain 72.07 GFlops in this scheme.

Table 2. Global memory access for one stencil operation
in 3.5D scheme

Global

memory access

type

Load coefficients

(float)

(coefficient matrix

size/block size/2)*

Load

grid

points

(float)

Write

grid

points

(float)

Load velocity

parameter

(integer)

Data required 16.29*4B 3*4B 3/2*4B 2*2B

As for the K20 (3.5D) scheme, a stencil operation consists

of 75 floating-point operations. And data access times from

global memory for a stencil are illustrated in Table 2. The

theoretical ratio of floating point rate (flop/second) versus

the memory bandwidth (bytes/second) for our 3.5D

implementation is 2.29. Because the peak bandwidth of

K20 is 208 GBps for all memory access coalesced, the

theoretical peak computing performance is 90.82 GFlops.

Our 3.5D scheme achieves 72.07Gflops, which is 79.35%

of theoretical peak performance on GPU. In other words,

our optimizations significantly eliminate the performance

damage from memory un-coalesced access.

In addition, we compare the performance of 8th-order ETE

and 8th-order FD stencil. The time interval of 8th-order FD

is 5 times smaller than that of ETE so at to achieve similar

accuracy (Dai et al., 2014). We simulate the wave

propagation process with t = 0.2 ms for FD and with t

= 1 ms for ETE. The time performance for 1s simulation is

illustrated in Table 3. Our ETE-based propagation achieves

15% performance improvement. A section of the GPU-

based ETE RTM image of a 3D land seismic data is shown

in Figure 7. The velocity model with sharp discontinuity is

presented on left side.

Figure 5. Performance of different optimization schemes

Table 3. Time performance for ETE and FD in 1second

 8-order FD 8-order ETE

Times(s) 105.35 90.6756

Figure 6. A section of 3D RTM image using GPU-based ETE

Conclusions

In this paper, we present our work on a parallel GPU-based

ETE solution. When performing ETE stencil, coefficients

of each point in stencil have be loaded from global memory.

The sharp discontinuity of the coefficient matrix access

pattern brings significant challenge for GPU implement-

tation. We replace original 8th-order 3D complex ETE

stencil by 3 more simple ones with better properties. Most

part of the coefficient matrix can be stored in shared

memory in these 3 simple stencils. A 3.5D scheme, which

combines the spatial and temporal blocking, is applied to

GPU-based ETE. We achieve approximate 5.5x speedup on

one Tesla K20 card, compared with a 12-core CPU node.

Our GPU-based ETE is able to effectively exploit the

theoretical floating point efficiency of hardware and enable

ETE method to become a strong competitor to FD method

on GPU platform. Our design also brings inspiration to a

board of FD-like method with variable coefficients.

Acknowledgments

The authors would like to thank BGP and CNPC for the

supporting the project, for providing devices to perform the

experiments and for permission to present this paper.

