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Summary 

 

Finite-difference (FD) methods have long been among the 

most popular solutions for RTM and FWI. Compared with 

FD methods, the Explicit Time Evolution (ETE) method is 

able to simulate the wave propagation in acoustic media 

with higher spatial and temporal accuracy, at the cost of a 

more complicated memory access pattern. Similar to FD, 

ETE performs a stencil operation on every grid point, 

except that the coefficients of the stencil change spatially 

with the velocity parameter of that position. While FD 

methods already have highly-efficient designs on GPU 

platforms, in ETE, the sharp velocity discontinuities can 

result in un-coalesced memory access patterns. Moreover, 

the increased number of involved off-axis points in the 

stencil and the increased number of different coefficients 

bring more pressure for the fast buffers and memory in the 

GPU. To solve these issues, in this paper, we decompose 

the complex stencil into a number of sub-components, so as 

to form a better memory access pattern for coefficients and 

to simplify the calculation of stencil operations. Finally, we 

combine the decomposition scheme with 2.5D spatial and 

1D temporal blocking optimizations. With one K20 GPU 

card, we manage to achieve 5.5x speedup compared against 

12 cores Intel E5- E5645 CPU. 

 

Introduction 

 

The finite-difference (FD) method is one of the most 

popular waveform modeling methods used in RTM and 

FWI. The spatial derivatives of FD are often approximated 

in higher order whereas the temporal derivatives are usually 

approximated in 2nd order. As a consequence, the FD 

method often suffers from low temporal accuracy. 

Compared to the FD method, FFT-based methods can 

achieve higher accuracy. Nevertheless, the computational 

cost of multi-dimensional Fourier transforms in each time 

step is more expensive than the FD method. Another 

drawback for such methods is that additional treatments are 

needed to suppress the wrap-around effect caused by the 

periodic source assumption. The Explicit Time Evolution 

(ETE) method (Liu et al., 2014) can achieve high spatial 

and temporal accuracy in acoustic media without using 

Fourier transforms. By adopting a FD-style operator in the 

discrete spatial-time domain to explicitly extrapolate 

wavefields in time, the ETE method achieves spectral-like 

accuracy by optimizing the spatial operator to fit an 

analytical counterpart in the wavenumber domain. The 

disadvantage of the ETE method is that coefficients of 

stencil points vary over the velocities of center points. In 

implementation, a coefficient matrix and an array of 

velocity parameters are required to be maintained in 

memory.  

 

In recent years, GPU has become a popular parallel 

platform to accelerate FD methods for seismic computing. 

However, an efficient solution for ETE method has not 

been proposed on GPU. It is mainly because the sharp 

velocity discontinuities can result in un-coalesced memory 

access patterns. As a result, when calculating the stencil for 

a point, neighbor GPU threads need to perform un-

coalesced accesses to the global memory to load the ETE 

coefficients, which bring significant performance damages. 

Similar challenges also exist in a variety of FD-like 

methods, such as (Liu, 2013; Wang et al., 2014; Tan et al., 

2014).  

 

To solve the above issues, in this paper, we proposed a 

highly-efficient method to implement the 8th-order 3D 

ETE stencil on GPU. We avoid the un-coalesced accesses 

to coefficients by decomposing the original stencil into 3 

small stencils. Thus, most of coefficients are able to be 

stored in on-chip fast buffer on GPU. As a result, we 

conduct 3 GPU kernels to sweep through the spatial grid. A 

2.5D spatial blocking and 1D temporal blocking strategies 

are also applied to further reduce the memory access time. 

 

When processing ETE-based RTM or FWI jobs, our GPU-

based scheme can improve the processing capability of 

each single node by 5.5 times when compared against 12 

CPU cores. Using our proposed GPU-based ETE design, 

the practical RTM processing time for one shot on a single 

node can be reduced from 1.38 hours one shot to 15 

minutes, making ETE a favorable design in many cases. 

 

The ETE method  

 

The acoustic wave equation in the time-wavenumber 

domain assuming a constant velocity is presented as 

follows: 
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The analytical solution of equation (1) is as follows: 

     ˆ , 2cos ˆ ˆ( , ) ,k k kp t t v t p t p t t      k    (2) 

For variable velocities, we consider velocity v as a “local 

constant” and convert equation (2) to the time-space 

domain: 

       , 2 | * , ,p t t c v t p t p t t     x x x x    (3) 
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Where  |c v tx  is a spatially variable 2D or 3D filter 

corresponding to cos( | |)v t k  in the wavenumber domain 

and * denotes a spatial convolution.  

 

An explicit time evolution (ETE) operator for wavefield 

simulation based on equation (3) is formulated in a discrete 

space. For a selected stencil in a neighborhood of any given 

point in the space domain, we seek coefficients that 

minimize the difference between their discrete Fourier 

Transform and cos( | |)v t k  in the wavenumber domain. 

The accuracy of the time evolution of the wavefield will be 

solely determined by the fitting of the cosine function at 

each wavenumber. We seek cj, the coefficients of each 

stencil point, in least square sense: 
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where x x x  j j    is the distance vector from updating 

point to a stencil point. Once the coefficients cj are 

determined, the ETE operator application to wavefield 

simulation is similar to FD schemes, as described in the 

following formula: 
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As for the shape of ETE stencil, it has been proven that 

adding off-axial points can significantly reduce the misfit. 

A stencil including off-axial stencil points with minimal 

distances to the center appears to be optimal to reduce the 

misfit of cosine function. However these points increase the 

complexity of stencil, which bring challenge to implement 

ETE on GPU. According to ETE design, an 8th-order 3D 

ETE Stencil is optimum in real application, as is shown in 

Figure 1. The stencil operation involves 37 nearest 

neighboring points on a spatial grid. The ETE stencil 

sweeps through the entire 3D grid multiple times to update 

each grid point with calculations involving its nearest 

neighbors. The updating rule for one time sweep is 

indicated in equation (5). 

 
Figure 1. The shape of 8th-order 

 

ETE stencil can sufficiently reduce the fitting error to a 

magnitude of 10-6. In an 8th order ETE scheme, ETE 

operator contains 37 points while FD operator contains 25 

in 3D. Numerical experiments indicate, however, that in 

order to achieve similar accuracy the FD scheme requires 

time steps about five times as fine as does ETE. Therefore, 

ETE operator is superior to the traditional FD scheme in 

terms of accuracy and overall performance (Dai et al., 

2014). 

 

GPU optimizations for ETE 

 

It is noticeable that there is significant data reuse of points 

in current grid p(t) across their spatial neighbors. With 

spatial blocking, a chunk of data in 3D gird can be loaded 

into the fast buffers of GPU architectures to be reused for 

computations. However, since the fast buffers available per 

multi-processor are not sufficient to store the entire 3D 

subdomain of the problem, as is shown in Figure 2, a 2.5D 

blocking scheme (Nguyen, 2010) is taken to increase the 

data locality. 2.5D spatial blocking blocks in two dimen-

sions and streams through the third dimension. When 

implemented on GPU, points along the third dimension are 

assigned to one thread to perform stencil operations. 

Registers and shared memory, from which the latency of 

data fetching is two orders of magnitude lower than that of 

global memory, serve as fast buffers on GPU. These fast 

buffers can only be shared with threads in same block. 

Only a few layers of planes in current grid are required to 

be cached in fast buffer for calculating one result plane of 

next gird. We stream through the third dimension to 

perform stencil operations plane by plane. 

 

R

R

Top view of a block  
Figure 2. A 2.5D blocking of 3D grid streaming through axis z. 

x ydim dim is size of xy-plane in one block. R is size of boundary. 

 

Different from FD stencil, the coefficients of each stencil 

point are not a constant value. The coefficients for different 

velocities are calculated before spatial sweeps of ETE 

stencil using the least-square method. A 2D coefficient 

matrix and a 3D coefficient index array have to be stored in 

the GPU global memory before the sweeps. For the 

coefficient matrix (c in equation (5)), the number of rows is 

eN (the number of spatial points involved in the stencil), 

and the number of columns is the number of different 

discretized velocities that we use to calculate the ETE 

coefficients in the model. The size of the index array is the 

same as the grid size, which is nx ny nz  . When 

conducting the stencil operation, a thread first accesses the 

coefficient index array according to its coordinate in the 3D 

grid. The index determines which column to get the 

coefficients for the 
eN =37 neighboring points in the 8th 

order 3D ETE stencil.  
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The real geological structures usually come with sharp 

velocity discontinuities. Such velocity distribution leads to 

discontinuous accesses to the coefficient matrix, which 

results in un-coalesced memory accesses of neighboring 

threads on GPU. GPU devices provide a very high off-chip 

memory bandwidth (up to 208 GB/sec), but this bandwidth 

is only achievable with coalesced access. In another word, 

data from the global memory is transferred to the GPU 

device in contiguous blocks, and high bandwidth can only 

be achieved when requests by concurrent 32 adjacent 

threads fall within such contiguous blocks. When non-

continuous memory locations are accessed by threads, the 

achieved bandwidth is much lower than the peak, leading to 

stalling and wasted compute cycles.  

 

To resolve the above issue, we propose to decompose the 

ETE stencil into a number of sub-components, each of 

which can perform independent scaling and sum 

calculation to update the grid points with fewer rows of 

matrix coefficients. By using such a decomposition scheme, 

we can then fit the required coefficients into the shared 

memory, and improve the memory access efficiency.  

 

As for the 8th order ETE stencil, a decomposition scheme 

is carefully designed. As shown in Figure. 3, sub-

component (a) is a 2D stencil on the xz-plane. We can 

sweep the spatial grid along the y axis to perform a 2D 

stencil operation. Sub-components (b) and (c) are with 

same shape and are symmetric to the center point in 

original stencil. When sweeping along z axis, only 2 points 

on upper and lower xy-plane are required for stencil (b) and 

(c). The corresponding rows of coefficient matrix can fit 

into the shared memory. In stencil (a), the size of all 

involved coefficients may be slightly beyond the shared 

memory capacity. We store most of the coefficients in the 

shared memory, and store the rest of them in the read-only 

cache. An implementation of numerically equivalent ETE-

method is illustrated in Table 1. 

 

(a) (b) (c)  
Figure 3. Decomposition of 8th order-ETE stencil. The points in 

same layer are with the same color. 

 
Table 1. A stencil decomposition scheme for ETE method 

Kernel 1 

     Load c(x) of stencil (a) into shared memory and read-only 

cache 

     
(a)

, 2 ( , ) ,x x x x xj

j stencil

p t t c p t p t t


      j  

Kernel 2 
load c(x) of stencil (b) into shared memory 

   
(b)

, 2 ( , )x x x xj

j stencil

p t t c p t


      j  

Kernel 3 
load c(x) of stencil (c) into shared memory 

   
(c)

, 2 ( , )x x x xj

j stencil

p t t c p t


      j  

 

3.5D spatial/temporal blocking implementation on GPU 

 

Since sweeps of 3D grid will be executed for multiple time 

steps, we can further combine the 2.5D spatial blocking 

scheme with an additional 1D temporal blocking scheme by 

executing 2 time steps of blocked data so that intermediate 

data can reside in shared memory and registers. A 3.5D 

scheme is applied to stencil (b) and stencil (c). Details of 

the 3.5D implementation are illustrated in Figure 4. We 

rearrange the temporal calculation order of xy-plane so that 

the 3.5D ETE-stencil can work in pipeline. Each 

calculation step, a xy-plane is loaded into fast buffer from 

the grid of time step t and a xy-plane is written to the grid 

of time step 2t t  . The grid points of time step t t are 

stored in registers and shared memory on GPU. The xy-

planes of 3D grid are written to global memory every 2 

time steps.  

 

This scheme saves all global memory transfers to and from 

gird ( )p t t  , leaving one load and one store (eviction) for 

two points updates. In addition, the coefficients of the 3.5D 

scheme can be reused by 2 time steps in ETE. However, an 

extra piece of shared memory is required in 3.5D scheme, 

which reduces the available shared memory for coefficient 

matrix. 
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Figure 4. A snapshot of the 3.5D blocking scheme. At the current 

calculation step, xy-plane with z = 6 at time step T = 2 is calculated. 

(Numbers labeled in xy-planes illustrate the order of execution. 
The Z at bottom indicates the z coordinate of xy-plane. The T on 

the right demonstrates the time step of propagation.) 
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Experiment results 

We implemented ETE method on multi-core CPUs and 

GPU in a 3D domain. Our GPU platform is a Tesla K20 

card with driver version 6.5. Our CPU platform is a dual-

socket 12-core Intel Xeon E5-E5645 CPU. For our 3D 

problem model, the dimension size on the z axis (nz) is set 

to be 912. The dimension sizes on the x and y axes are kept 

as 320. Our velocity model is a complete random 

distribution of 902 different velocity values. The 

performance of different optimization schemes is illustrated 

in Figure 5. 12-core CPUs refers to a CPU implementation 

with 12 cores sharing a common 48GB memory. We 

carefully block the 3D domain for cache locality and apply 

SIMD for achieving the best vectorized performance. The 

performance on 12-core CPUs is 12.97GFlops. K20-naïve 

refers to our straightforward implementation on GPU, with 

coefficients read directly from the global memory. K20 

(decomposition) refers to our improved design that 

decomposes the stencil into 3 ones, most of whose 

coefficients are loaded in shared memory initially. K20 

(decomposition +3.5D) refers to our final design that uses 

the 3.5D spatial and temporal blocking scheme, and 

coefficients are accessed from shared memory. We can 

obtain 72.07 GFlops in this scheme. 
 

Table 2. Global memory access for one stencil operation  
in 3.5D scheme 

Global 

memory access 

type 

Load coefficients 

(float) 

(coefficient matrix 

size/block size/2)* 

Load 

grid 

points 

(float) 

Write 

grid 

points 

(float) 

Load velocity 

parameter 

(integer) 

Data required 16.29*4B 3*4B 3/2*4B 2*2B 

 

As for the K20 (3.5D) scheme, a stencil operation consists 

of 75 floating-point operations. And data access times from 

global memory for a stencil are illustrated in Table 2. The 

theoretical ratio of floating point rate (flop/second) versus 

the memory bandwidth (bytes/second) for our 3.5D 

implementation is 2.29. Because the peak bandwidth of 

K20 is 208 GBps for all memory access coalesced, the 

theoretical peak computing performance is 90.82 GFlops. 

Our 3.5D scheme achieves 72.07Gflops, which is 79.35% 

of theoretical peak performance on GPU. In other words, 

our optimizations significantly eliminate the performance 

damage from memory un-coalesced access.  

 

In addition, we compare the performance of 8th-order ETE 

and 8th-order FD stencil. The time interval of 8th-order FD 

is 5 times smaller than that of ETE so at to achieve similar 

accuracy (Dai et al., 2014). We simulate the wave 

propagation process with t = 0.2 ms for FD and with t  

= 1 ms for ETE. The time performance for 1s simulation is 

illustrated in Table 3. Our ETE-based propagation achieves 

15% performance improvement. A section of the GPU-

based ETE RTM image of a 3D land seismic data is shown 

in Figure 7. The velocity model with sharp discontinuity is 

presented on left side. 

 

 
Figure 5. Performance of different optimization schemes 

 
Table 3. Time performance for ETE and FD in 1second 

 8-order FD 8-order ETE 

Times(s) 105.35 90.6756 

 

 
Figure 6. A section of 3D RTM image using GPU-based ETE 

 

Conclusions 

 

In this paper, we present our work on a parallel GPU-based 

ETE solution. When performing ETE stencil, coefficients 

of each point in stencil have be loaded from global memory. 

The sharp discontinuity of the coefficient matrix access 

pattern brings significant challenge for GPU implement-

tation. We replace original 8th-order 3D complex ETE 

stencil by 3 more simple ones with better properties. Most 

part of the coefficient matrix can be stored in shared 

memory in these 3 simple stencils. A 3.5D scheme, which 

combines the spatial and temporal blocking, is applied to 

GPU-based ETE. We achieve approximate 5.5x speedup on 

one Tesla K20 card, compared with a 12-core CPU node. 

Our GPU-based ETE is able to effectively exploit the 

theoretical floating point efficiency of hardware and enable 

ETE method to become a strong competitor to FD method 

on GPU platform. Our design also brings inspiration to a 

board of FD-like method with variable coefficients. 
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