
Cache-friendly Design for Complex Spatially-variable Coefficient Stencils on
Many-core Architectures

Jiarui Fang⇤†‡§, Haohuan Fu⇤§, Guangwen Yang⇤††§
†Department of Computer Science & Technology, Tsinghua University

⇤Ministry of Education Key Lab. for Earth System Modeling, Center for Earth System Science, Tsinghua University
‡Tsinghua National Laboratory for Information Science and Technology (TNList)

§National Supercomputing Center in Wuxi

Abstract—Many-core architectures, such as the NVIDIA
graphics processing unit and Intel Xeon Phi, which are char-
acterized by high computation resources but limited on-chip
memory capacity, have been used to significantly accelerate
various computationally demanding tasks. Stencil operators
are naturally suitable for such architectures because of their
parallel calculation patterns. However, only simple stencils
with points distributed along the axes and with constan-
t coefficients have been fully investigated. This study first
provides insights into optimization strategies for stencils with
complex shapes, including off-axial points and spatially vari-
able coefficients. Through our proposed stencil-decomposition
schemes, we maintain read-only coefficients in on-chip caches
to avoid unvectorized memory access. To alleviate the resulting
severe cache-starvation situation, a generalized cache-friendly
design for many-core architecture is proposed. It can reduce
cache miss times and cache space consumption. The proposed
methodology significantly improves the performance of stencil
operations in a real seismic imaging application and introduces
a new option to write highly efficient memory-bound stencil-
like loops.

Keywords-Many core architecture, GPU, Intel Xeon Phi,
Spatially-variable coefficient stencil, Seismic imaging

I. INTRODUCTION

Stencil computations are ubiquitous in scientific com-
puting problems, such as those in fluid dynamics, seismic
imaging, ocean modeling, and climate simulation. A stencil
computation [4] is used to formulate approximate numerical
solutions for partial differential equations by performing lin-
ear weighting of a small neighborhood in a discretized grid.
To obtain an accurate and efficient approximation, scientists
have shifted interest from simple constant-coefficient stencils
generated from low-order equations to complex shapes and
variable coefficients stencils (CSVC stencils) discretized
from high-order equations with higher accuracy and longer
discrete time intervals. Spatially variable coefficients gener-
ally correspond to the constitutive parameters of a physical
problem, such as velocity, elastic moduli, and conductivities,
depending on space or time. Complex shapes indicate that
additional off-axial points are included in the stencils, which
are used to reduce the misfit between the analytical solution
and the numerical solution.

Before the 21st century, multi-core processors were the
only solution for the problem caused by the situation in
which the clock rate gains of a single processor cannot be
continued anymore. Recently, the rapid development of high-
performance computing technologies has resulted in many-

core architectures, which can provide huge computing power
higher than that of multi-core architectures. By deploying
numerous computing cores and different memory hierarchies
on a single chip, such platforms can generally achieve im-
proved performance through high parallelism, and thus, are
promising candidates to satisfy the large computing demands
of real-world applications. For example, the graphics pro-
cessing unit (GPU) designed by NVIDIA and the Xeon Phi
based on the Intel Many Integrated Core (MIC) architecture
are two popular many-core architectures that have been
widely used in many key applications [1],[2]. Given their
natural parallel calculation patterns, stencil operators are the
first batch of applications that have been ported to many-core
architectures.

To date, most optimization processes have been directed
to design operators on many-core architectures for stencils
with simple shapes generated from heat, diffusion, and
Poissons equations, etc., which are characterized by constant
coefficients and shapes that only include points on the
axes. However, a comprehensive investigation towards im-
plementations of CSVC stencils remains unavailable: On one
hand, variable coefficients can shift the dominant working
space from the grid points being updated to the coefficients
themselves; Complex shapes including off-axial points can
make cache reuse more difficult. CSVC stencil operations
therefore can cause problems on cache locality and are
featured with extremely low flop-per-byte ratios. On the
other hand, in many-core architectures such as GPU and
Xeon Phi, more resources are allocated for computation;
consequently, less resources are allocated for on-chip cache.
It is hard to unleash the computing power of many-core
architectures with existing caching strategies on traditional
architectures like CPU and multi-core CPU.

In this study, we propose a cache-friendly design for
CSVC stencils to bridge the gap between limited on-chip
storage resources on many-core architectures and the cache-
starved situation arising from CSVC stencil computations.
We have selected two stencils generated via the explicit time
evolution (ETE) method in seismic forward modeling [10],
which has been developed as a powerful alternative to the
finite difference (FD) method [5], as real application cases
for evaluating performance. Two ETE stencils, including
12 and 48 off-axial grid points with coefficients varying
with the velocity values of that position, are presented to
evaluate our design. We demonstrated that it is not possible

to achieve highly-efficient implementations of the 73-point
ETE stencil using conventional optimization techniques for
some memory hierarchies of many-core architectures, such
as GPU.

The main contributions of this study are as follows.
• A stencil decomposition scheme for caching read-only

spatially variable coefficients is proposed to alleviate
unvectorized memory access.

• A cache-friendly design is introduced to reduce the
cache consumption for grid point reuse, which is also
highly efficient in terms of reducing cache miss rate
and boundary memory traffic.

• Our designs have already been integrated into a real-
world seismic imaging application. We achieve consid-
erably better performance for the stencils with more
off-axial grid points on Xeon Phi than GPU. Some
insights into these two architectures for optimizing
CSVC stencils are presented.

The remainder of this paper is organized as follows. In
Sec. II, we present a real case that can generate CSVC
stencils. In Sec. III, we introduce the many-core platforms
that we used in this study. In Sec. IV, we present our
solutions for spatially variable coefficients. Some insights
are investigated and a cache-friendly design is proposed in
Sec. V. We provide the corresponding experimental results
on performance in Sec. VI. Lastly, we present related works
and conclude our study in Secs VII. and VIII.

II. GENERATIONS OF CSVC STENCILS

We present a real application for the seismic forward
modeling method that generates CSVC stencils. Seismic
forward modeling is the most computationally expensive part
of high-quality seismic imaging methods for hydrocarbon
exploration, such as reverse-time migration [11] and full
waveform inversion [12].

The analytical solution for the acoustic wave equation in
the wavenumber domain that assumes a constant velocity is
as follows:

p̂ (k, t+�t) = 2 cos (v�t |k|) p̂(k, t)� p̂ (k, t��t) (1)

where k = (k

x

, k

y

, k

z

) is the wavenumber vector. For vari-
able velocities, we consider velocity v as a ”local constant”
and convert Equation (1) into the time-space domain:

p (x, t+�t) = 2c (x|v�t) ⇤ p (x, t)� p (x, t��t) (2)

where c (x|v�t) is a spatially variable 2D or 3D filter
that corresponds to cos(v�t|k|) in the wavenumber domain,
and * denotes a spatial convolution. An ETE operator for
wavefield simulation based on Equation (2) is formulated
in discrete space. For a selected stencil in a neighborhood
of any given point in the space domain, we search for the
coefficients that minimize the difference between their dis-
crete Fourier transform and cos(v�t|k|) in the wavenumber
domain. The accuracy of the time evolution of the wavefield
will be solely determined by the fitting of the cosine function
at each wavenumber. We search for c

j

, i.e., the coefficients

(a) (b)

Figure 1. Shapes of two type 8th order ETE stencils. (a) is 37-point ETE
stencil. (b) is 73-point ETE stencil.

of each stencil point, in the least square sense, as follows:

MIN |
X

j

c

j

e

i�xj�k � cos (v (x)�t |k|)|
2

(3)

where �x

j

= x

j

�x is the distance vector from the updating
point to a stencil point. Once coefficients c

j

are determined,
the ETE operator applied to the wavefield simulation is
similar to the FD schemes, as described in the following
formula:

p (x, t+�t) = 2

NeX

j=1

c

j

(x) p(x+�x

j

, t)� p (x, t��t)

(4)
For the shapes of the ETE stencils, an 8th-order stencil,
including off-axial stencil points, has been proven to be
optimal for reducing the misfit of the cosine function, which
can reach a magnitude of 10�6. Numerical experiments from
[10] indicate that the FD scheme requires time steps that are
approximately five times as fine as that in ETE to achieve a
similar accuracy. Therefore, the ETE operator is superior to
the conventional FD scheme in terms of efficiency. Figure
1 shows two types of ETE stencils: the 37-point stencil
is used in isotropic media, whereas the 73-point stencil is
commonly used in tilted transversely isotropic media. The
stencils are traversed multiple times through the entire 3D
grid to update each grid point with calculations that involve
its nearest neighbors. The updating rule for one time sweep
is indicated in Equation (4).

III. PARALLEL COMPUTING ARCHITECTURES

We explore the performance of our designs on 5 platforms
mentioned in Table I, where ARCH-FBR indicates the flop-
to-byte ratio1 of the architecture. We briefly introduce two
many-core architectures, i.e., NVIDA GPU and Intel Xeon
Phi, in this section.

A GPU card consists of a set of stream multiprocessors
(SMs). Each SM has its own stream processors (SPs). Tesla

1Flop to Byte Ratio is the ratio between peak computation performance
and the measured memory bandwidth (measured from the STREAM
benchmark on CPU/MIC and the bandwidthTest facility on GPU) of the
above different platforms

Table I
THE PERFORMANCE AND BANDWIDTH OF THE EVALUATED PLATFORMS.

Architectures Clock Peak Performance Cache Size Memory ARCH-FBRTFlops per core (KB) bandwidth(GB/s)
GHz float double L1 L2 theoretical measured single double

E5-2697 v2 2.7 0.512 0.256 32 256 119 114 4.49 2.24Ivy bridge
MIC 5110P 1.053 2.002 1.011 32 512 320 130 15.4 7.7Knights Corner
MIC 7120P 1.238 2.416 1.208 32 512 352 150 16.11 8.05Knights Corner
Tesla C2070 1.15 1.03 0.515 64 768 144 100 10.3 5.15Fermi
Tesla K40c 0.75 4.29 1.43 64 1536 288 204 21.0 7.00Kepler

E5-2697 v2 has a 30M L3 cache shared among 12 cores;
64KB L1 cache on Tesla GPUs can be configured as 48KB shared memory + 16KB L1 or 16KB shared memory + 48KB L1

C2070 has 14 SMs, each of which has 32 SPs, and K40c has
15 SMs, each of which has 192 SPs. Each SM has an on-
chip memory of 64 KB that can be accessed both explicitly,
as a shared memory, and implicitly, as an L1 cache. An
SM also has a register file, which is 256 KB on Kepler
architecture and 128 KB on Fermi architecture. Each Kepler
SM is equipped with an easily accessible read-only cache of
48 KB per SM, which is an extension of the texture cache
available in Fermi architecture.

The Intel Xeon Phi (Knights Corner) coprocessor features
a high number of simple cores (61), with support for 512
bit wide vector processing units (VPUs). In Xeon Phi, all
the cores are connected via a ring bus that transports data
between caches, memories, and the outside memory space
via the PCIe bus. This ring bus plays an important role in
creating the L2 cache coherency of Xeon Phi. Each core
has its own directly attached 512KB L2 cache. If a desired
data segment is absent from the L2 cache of a core, then
the L2 caches of the other cores will be probed before
finally retrieving the data from the comparatively slow main
memory as the last resort. Data found in the L2 cache of
another core will be sent back to the requesting core through
the ring bus. Xeon Phi is designed to run a maximum of four
independent threads per core, where each in-order core can
execute up to two instructions per cycle.

IV. DECOMPOSITION SCHEME FOR STENCILS WITH
VARIABLE COEFFICIENTS

For a stencil with variable coefficients, particularly N

e

different coefficients, it seems that we need to maintain a
4D coefficient array with size N

X

⇥N

Y

⇥N

Z

⇥N

e

. Given
that the coefficients are describing one type of property
with this position in a 3D grid domain and with limited
diversity, the number of distinctive coefficient values N

d

is relatively small compared with the size of the 3D grid.
To reduce memory consumption, we only need to store
a read-only coefficient matrix with size N

e

⇥N

d

and a
coefficient index array with size N

X

⇥N

Y

⇥N

Z

in the
memory before the stencil sweeps. In the ETE method, the
index array represents the velocity of the position. As shown
in Fig. 2, when conducting stencil operation using the ETE
method, we access the coefficient index array according to

Number of velocity

Coef_index

(i,j,k)

(nx*ny*i+ny*j+k)

Coef_index
[nx*ny*i+ny*j+k)]

28th point

28th rowCoef_index
[nx*ny*i+ny*j+k][28]

Figure 2. Memory access pattern of spatially variable coefficients of the
37-point ETE stencil.

its coordinate to acquire the index and then access a group
of coefficients according to the index.

The parameter distributions, on which the coefficients de-
pend, generally exhibit sharp spatially discontinuities. Such
distributions lead to discontinuous access to the coefficient
matrix of neighbor stencil operations, which results in a
non-vectorized (un-coalesced) memory access pattern on
many-core architectures. Performance loss resulting from
such an access pattern for multi-core CPU architectures is
insignificant given that the coefficients can be maintained in
a shared L3 cache (30 MB+ in Sandy Bridge 12-core CPU).
However, such access pattern will lead to performance loss
on many-core architectures without a large shared last-level
cache. On GPU, neighbor threads (Fig. 2) access coefficients
in noncontinuous global memory positions un-coalescedly.
Un-coalesced accesses are an order of magnitude slower than
coalesced memory accesses. The achieved global memory
bandwidth is considerably lower than the peak (over 100
GB/s), which leads to stalling and wasted computation
cycles. The reason is because that memory loads of 32 neigh-
boring threads in a warp can be finished in one transaction
with coalesced access, but they will be executed in many
transactions with un-coalesced address patterns including
large strides between. On Xeon Phi, unvectorized access
patterns require more cache lines loaded into L2 or L1 cache,
which will also result in noticeable bandwidth waste.

To address this problem on many-core architectures, we
intend to initially prefetch and load the read-only coefficient

matrix into the on-chip cache and then to access the cache
for the coefficients. Memory access for initial cache loading
can be vectorized. Xeon Phi has a 512 KB L2 + 32KB
L1 cache each core, which is always sufficiently large for
the read-only coefficient matrix. For the GPU architecture,
the shared memory with bandwidth around 1.5-2 TB/s is
user-controlled for memory prefetching. However, the shared
memory can be set to a maximum 48KB, which is sometimes
insufficient for caching entire coefficient matrix. As a result,
a large number of coefficients also have to be loaded from
global memory with an un-coalesced access pattern.

To eliminate un-coalesced global memory access com-
pletely, we design stencil decomposition schemes for ETE
stencils. It is based on the associative law of addition.
The equ. (4) can be reformed into two equations with an
equivalent effect.

p (x, t+�t) = 2

NsplitX

j=1

c

j

(x) p(x+�x

j

, t)� p (x, t��t)

(5)

p (x, t+�t)+ = 2

NeX

j=Nsplit+1

c

j

(x) p(x+�x

j

, t) (6)

A variable coefficient stencil can be reconfigured into two
sub-stencils and the rows of the coefficient matrix are broken
down by the sub-stencils. Each sub-stencil can perform
independent scaling and sum calculation to update the grid
points with the corresponding rows of the matrix coeffi-
cients. By using this decomposition scheme, we can then fit
the coefficients of one sub-stencil shared memory on GPU
to execute one sweep (complete update of all points) and
reload the coefficients of the other sub-stencil into shared
memory for another sweep. The decomposition scheme for
the 37-point ETE stencils is illustrated in Fig. 3. Performing
another sweep requires to reload grid points into the on-
chip cache from global memory. On Kepler architecture,
we can store one part of coefficients in shared memory
and the other part of coefficients in the 48 KB read-only
cache. The memory access to the read-only cache will also
result in global memory access but with a longer cacheline.
It can reduce wasted global memory access bandwidth but
the latency for un-coalesced memory access is still far
higher than shared memory access. However, with read-
only cache, we perform one-time sweep instead of twice,
which can reduce the overhead of reloading grid points.
Thus a tradeoff should be considered between the overhead
of the sweep and performance loss for un-coalesced memory
access. Applicability of this scheme is discussed in Sec. VI.

V. CACHE-FRIENDLY DESIGN FOR STENCILS WITH
COMPLEX SHAPES

Stencil computations for two neighboring positions re-
quire a large number of common points. Caching grid points
for data reuse is a primary method to alleviate the constraints
of memory bandwidth. Storing read-only coefficients in
cache has already exacerbated the cache-starved situation.
In this section, we describe our cache-friendly design to

Number of velocity

sN

Coef_index

(a)

(b)

Figure 3. Stencil decomposition for the 37-point ETE stencil (The shapes
can be arbitrary). The coefficients table is cut into 2 subtables, each of
which can be accommodated into shared memory or read-only cache.

reduce the cache use of cacheless many-core architectures
for stencils with off-axial points. Sometimes we use the 8th-
order ETE stencils as an example for simplicity, although our
method can be generalized for stencils with any shape.

A. Insights
We first present our insights into the cache usage of

CSVC stencils before introducing our design. For a simple
stencil operation with points on axes, the traditional cache
usage scheme [16] [23] suggests keeping all the grid points
of the current time step required in the on-chip cache to
update the grid points of the next time step and neighbor
stencil operations can reuse these data in the cache. CSVC
stencils are always handled using similar techniques. This
scheme ensures good CSVC stencil performance on multi-
core CPU architectures because the shared large L3 cache
of multi-core architectures can maintain sufficient required
grid points. However, now we need to present several
shortcomings caused by this cache usage scheme on many-
core architectures.

For Xeon Phi architecture, although the L2 cache can be
accessed by remote cores, the latency is considerably larger
than the local cache access. To guarantee that the processing
work set is a resident in the local L2 cache, we consider an
efficient blocking plan, shown in Fig. 4 (a), to split a large
3D grid into small blocks and then assign the calculation
of one block to one thread. Applying this blocking scheme
to 8th-order CSVC stencils, if nine successive layers of
grid points in this block fit in the caches, then the only
load operation that can cause cache miss is the last point
on the bottom layer. Assuming C is the cache size (as a
rule of thumb, only C/2 is available as a result of caching
both data and instructions); M

coef

is the size of the read-
only coefficient matrix required to be stored in the cache;
Size

point

is the storage space occupied by a grid point
element; N

x

is the block size of the x -axis, and N

y

is the
block size of the y-axis; n

nthread

is the number of threads in
one core. The layer condition [17] for the traditional method
is:

n

threads

⇥N

x

⇥N

y

⇥ Size

point

⇥ 9 < C/2�M

coef

(7)

As discussed in Sec. III, 512 KB + 32 KB local cache
space is shared by a maximum of four threads. To leverage

(a) MIC blocking (b) GPU blocking

Thread
block

Figure 4. The blocking strategies for many core architectures. (a) one
thread is in charge of one block. (b) one thread is in charge of one line.
One thread block is in charge of a column.

the wide VPU for vectorization efficiently, no blocking in
the x direction is applied. This conclusion is consistent with
[20]. To cache the upper layer points of the stencil, block
size y should be set as a small value. Small blocks lead to
numerous boundary memory traffic for the entire 3D grids.
As a second choice, we violate the layer condition to adopt a
large block in order to reduce boundary memory traffic and
allow cache miss to occur at a position far from the center
points. However, for CSVC stencils with too many points on
the top and bottom layers, such as the 73-point ETE stencil,
this choice results in many cache misses. To address this
problem, we can consider a stencil decomposition scheme
that combines appropriate blocking techniques to reduce the
occurrence of cache miss. For the 37-point ETE stencil, we
can split a stencil into two sub-stencils. Most of the points
of the first sub-stencil are distributed on the xy-plane. The
stencil is swept in the order of x ! y ! z on the 3D grid.
By contrast, most of the points of the other sub-stencil are
distributed on the xz-plane and sweeps the 3D grid in the
order of x ! z ! y. We observe a performance boost in
this scheme. However, selecting the blocking techniques is
highly inflexible, and the decomposition plan is restricted to
certain stencil shapes. We also need to adopt different best
blocking parameters for each substencil.

For GPU architecture, a different blocking scheme is
adopted according to the architecture shown in Fig. 4 (b).
The 3D grid is split along z axis by blocks. A GPU thread
is in charge of the computation of a series of grid points
along the z-axis. A block is calculated by a thread block.
Several studies [6][18] have already implemented this con-
cept by utilizing registers and shared memory to cache grid
points. According to their designs, when the computation
is traversing through the z-axis, the stencil points of the
current xy-plane are stored in the shared memory, whereas
the remaining points are stored in the registers. We need
to store 12 points in the registers for the 37-point stencil.
At each step, 5 points are required to be loaded into the
registers of each thread from the global memory. That is, 5
global memory loadings for 4 off-axial columns and 1 center
column are required to calculate 1 point. Afterward, the
grid points of the next time step at the current xy-plane are

updated2 by points from the upper and lower 4 slices stored
in the registers of each thread in addition to the points stored
in the shared memory. Expanding the traditional stencil
calculation design to the 73-point ETE stencil, 168 registers
(9 register queues with length 8, 8 register queues with
length 6, 8 register queues with length 4, and 8 register
queues with length 2) are required for each thread. That is,
33 instances of global memory access are required to load
points into the registers at each step. A solution for GPU is
proposed in [14], where the researchers optimized a constant
stencil with off-axial points and stored all grid points in the
shared memory at each time. However, shared memory is a
considerably precious resource for variable coefficient ETE
stencils, as mentioned in the previous subsection.

In conclusion, the traditional cache usage scheme suffers
from three performance concerns. (1) A large stencil radius
in the outer grid dimension leads to high pressure on cache
for many-core architectures because these architectures have
to hold a large number of layers in caches. (2) More extra
boundary memory traffic or on-chip memory allocation are
required to avoid cache miss. (3) Data transfer between off-
chip memory and on-chip cache is concentrated on the read
operation. Most of the time, the store unit is idle.

B. Cache-friendly design
To reduce cache consumption, we introduce a cache-

friendly design. We observe that when a layer is cached,
a part of the cached grid points are also required by stencil
operations for the upper and lower layers. As indicated in
Fig.5, the solid points filled with different colors in the 37-
point ETE stencil are useful to obtain the next grid points of
9 stencil operations. Instead of caching all points required
for one complete stencil operation, our cache-friendly design
divides one stencil operation into 9 partial operations along
the xy-plane. Calculation of each part only requires the
data in one xy-layer. Through rearranging the calculation
order, the partial stencils requiring the data of the same xy-
layer are calculated together in each thread. By caching one
current xy-layer, we can update partial results of 9 layers
and sum them together to obtain the final results.

n

threads

⇥N

x

⇥N

y

⇥ Size

point

< C/2�M

coef

(8)

We now apply the cache-friendly design to the order-L
CSVC stencil implementations on Xeon Phi. When sweep-
ing from top layer to bottom layer in one block, we load
current xy-layer grid points into the local caches. These
points can be reused to execute partial stencil operations
as shown in Fig.5. Each stencil operation can produce
L intermediate results. Vector registers in Xeon Phi are
used to collect intermediate results, which are accumulated
to final results in the memory. Compared with traditional
cache usage scheme, this design can reduce the cache space
consumption to 1/L because only one slice of the block grid
is required to be stored in the cache. The layer condition for

2updating indicates accumulating the values of the grid points to current
values after scaling with the coefficients.

layer z
(cached)

layer
z-4

layer
z+4

Figure 5. Colored solid grid points can be reused in cache to update the gird points of upper and lower four layers.

CSVC stencils now becomes Equ. (8) to ensure that only 1
cache miss occurs (the newest point) in the read operation for
the current layer. Compared with that of the layer condition,
i.e., Equ.(7), of traditional cache usage, due to N

x

is the
same, the N

y

can be L times larger theoretically. We can
adopt a larger blocking size, which indicates less memory
traffic for boundary grid point loading. Most importantly, the
cache-friendly design also enables less cache assess times.
Grid points taken out from the cache can be involved in
multiply-add operations for at most L times. However, in
traditional scheme, each points taken out from the cache only
take part in one multiply-add operation. Less different points
in cache are required to be accessed for one stencil operation
with our cache friendly design. This will finally lead to less
memory access times when the theoretical layer condition
can not be met. Take the 73-point ETE stencil for example,
with traditional scheme, we require reading 73 grid point
from 9 layers in cache and writing 1 grid point to memory.
With cache-friendly, We require reading 33 grid points from
the current layer in the cache and writing 9 grid points to
the memory space of the next grid. Although, our cache-
friendly design will result in more writing cache misses on
Xeon Phi, write operations can overlap with read operations
and the latency can be hidden under read operations. The
cache-friendly scheme can rearrange read and write memory
traffic to reduce reading pressure.

For GPU architecture, we assign a thread to compute
output values for a given column along z axis and threads
of a given threadblock coherently traverse the 3D grid
block along z axis. When sweeping from top to bottom
layer, because the points in the current slice are needed for
computation by multiple threads of the same layer, input
points in the current slice are stored in shared memory. When
the points of the xy-layer are loaded into the shared memory,
we use points from the shared memory to execute partial
stencil operations of preceding and succeeding L/2 layers
as indicated in Fig.5. The intermediate results are stored in
registers rather than written directly into the off-chip global
memory. In order-L CSVC stencil kernels, 1 register queue
with length L is allocated for each thread and one-time

global memory access is required to calculate a single point.
After L + 1 steps, register 0 is accumulated with all the
points in the stencil; it contains the value of the grid point
at the next time step. Afterwards, register 0 is written to the
global memory and reset to zero. Then, the register queue
is circularly shifted for the next xy-slice updating. While
the traditional scheme requires maintaining off-axial points
not in the current layer in the registers, in our cache-friendly
scheme, only one register queue with length L is required to
maintain the intermediate results for each thread. As a result,
our cache-friendly design leads to less register consumption
and less global memory access times. For the 73-point
ETE stencil, compared with 168 registers required for grid
points caching with traditional scheme, cache friendly only
requires 8 registers regardless of the shape of stencil. In
addition, the cache-friendly design requires only one global
memory read access for each stencil operation, which can
be regarded as a cache miss on GPU, for grid points to
load them into the shared memory. However, the traditional
scheme requires memory access for all the off-axial points at
bottom for each stencil operation (i.e., 4 times and 17 times
global memory access for the 37-point and the 73-point ETE
stencils, respectively).

VI. PERFORMANCE EVALUATIONS AND DISCUSSIONS

We implement CSVC stencil kernels on 5 parallel ar-
chitectures mentioned in Sec. III with single- and double-
precision floating-point data. The Intel CPU and Xeon Phi
versions are implemented with icc compiler of version
15.0.2. GPU versions are complied with CUDA driver of
version 7.0. Performance is evaluated as number of floating-
point operations per second (Flops), which can be measured
by PAPI [15]. According to the real situation, the dimension
size of 3D grid is set to be 328⇥328⇥936. Our index array,
which represents the velocity model in forward modeling, is
a completely random distribution of 902 different velocity
values. Stencil operations are performed 800 times iterative-
ly.

A. Performance Metrics

1) Xeon Phi: Fig. 6 demonstrates the recorded perfor-
mance of the 37-point and 73-point CSVC stencils gen-
erated from ETE method on Intel Xeon Phi 5110p and
7120p. base+simd3 is a baseline implemented with data-
alignment, OpenMP multi-threading and SIMD vectoriza-
tion. base+simd+blk indicates that we optimize the baseline
with blocking on the y and z axes. Given that Xeon Phi has a
high number (61) of physical cores (4 hardware threads per
core), and the instructions from the same thread cannot be
executed in two consecutive cycles, context switches will
occur more frequently compared with that in CPUs. The
affinity mode, which directs how threads or processes are
bound to cores, and the multi-threading schedule scheme,
which directs how calculation assignments are bound to
threads, play significant roles in optimizing system perfor-
mance. In this work, configurations of the affinity mode and
the schedule scheme are adjusted carefully, to ensure com-
munication between tasks placed onto the closest adjacent
cores, as much as possible, which increases the sustained
intra-cache bandwidth. We observe that the implementation
of balance affinity and static schedule scheme with 180
threads always achieves best performance. Cache-friendly
design is implemented with our cache-friendly design men-
tioned in Sec. V, for which we perform a search to determine
the optimal block size for the best performance. Because the
cache-friendly design requires the initial values of the next
grid to be reset to zeros, we also include resulting overhead
in our results.

2) GPU: Fig. 7 demonstrates the recorded performance
of the 37-point and 73-point CSVC stencils on Tesla C2070
and K40c cards. When it comes to the 37-point stencil:
GMem illustrates the performance of accessing coefficients
directly from global memory. RO shows the performance
of accessing coefficients from the read-only cache. S-
Mem+traditional presents the performance of the traditional
cache usage scheme. SMem+cache-friendly shows the per-
formance implemented with our cache-friendly design. In
the later two cases, coefficients are directly accessed from
the shared memory; if exceeding, remaining coefficients are
accessed from the read-only cache.

Given that the traditional cache scheme will definitely
slow down the stencil operations with register spilling (ex-
cessive allocated variables are stored in L1 caches) and
excessive global memory accesses, we implement all the
73-point stencil operations with the cache-friendly design.
The coefficient matrix size (over the 122KB for double
precision) exceeds the available shared memory space. Two
kinds of stencil decomposition schemes are presented in case
the coefficient matrix is significantly larger than the 48KB
shared memory. SMem+2kernels(SM+SM) indicates that we
execute two spatial sweeps and store the required coefficients
by either component in the shared memory in turn. For Ke-
pler architectures, SMem+2kernels(RO+SM) indicates that

3Blocking techniques are useless for multi-core CPU due to the large L3
cache

we decompose the stencil into two sub-stencils and store
the corresponding coefficient sub-matrices separately into
the shared memory and the read-only cache.

B. Performance Analysis
1) Stencil Decomposition Scheme: On GPU, stencil de-

composition scheme is applied to 73-point ETE stencil oper-
ations. For Fermi, SMem+2kernel(SM+SM) scheme results
in 3.56⇥ (single-precision) and 1.58⇥ (double-precision)
performance boost compared with reading coefficients di-
rectly from global memory. For Kepler architecture, by using
the read-only cache, SMem+2kernels(SM+RO) is superior
to SMem+2kernels(SM+SM) version. It results in 5.18⇥
(single-precision) and 4.39⇥ (double-precison) performance
boost compared with reading coefficients directly from glob-
al memory. For 37-point stencil, coefficients are capable
to be cached in shared memory. Caching coefficients has
already brought significant performance boost compared
with fetching coefficients from global memory.

2) Cache-friendly Design: For the 73-point CSVC sten-
cil, compared with the traditional scheme, the cache-friendly
design enables 3.38⇥, 4.02⇥ (single precision), and 2.86⇥
and 4.29⇥(double precision) for Xeon Phi 5110p and Xeon
Phi 7120p, respectively. For the 37-point CSVC stencil,
our cache-friendly design enables 1.70⇥ and 1.80⇥ (single
precision), and 1.68⇥ and 1.30⇥ (double precision) for
Xeon Phi 5110p and 7120p, respectively.

Table II indicates the performance-monitoring events of
cache on Xeon Phi, which including the L1 and L2 cache
miss times of 800 times stencil operations. Because each
Xeon Phi core can access local L2 cache and remote
L2 caches, the missed data from L1 cache can be hit at
local L2 cache or filled at remote L2 caches and mem-
ory. We treat the latter two cases as a L2 cache mis-
s. We use L2 DATA READ/WRITE MISS CACHE FILL
to indicate counts of data loads that missed the local
L2 cache, but were serviced by a remote L2 cache and
use L2 DATA READ/WRITE MISS MEM FILL to indicate
counts of data loads were serviced by the memory. We
can see our cache-friendly design can significantly reduce
the L1 cache misses and achieve higher L1 hit ratios.
It can also be inferred that the total L1 cache access
times of cache-friendly designs, which can be achieved
by L1 CACHE MISSES/(1-L1 HIT RATIO), is far less than
the traditional schemes. The cache-friendly design results in
less L2 cache read miss times than the traditional scheme,
however results in more write cache misses. Moreover,
except for the 37-point double-precision case, cache friendly
designs have less L2 cache read+load miss times.

Fig. 8 illustrates performance distributions with different
blocking plans for the cache-friendly design and the tradi-
tional scheme. The cache-friendly design always achieves
best performance with larger block sizes than the traditional
scheme. A small block results in more extra memory traffic
for the boundary grid points and finally results in more
overhead.

On GPU, compared with versions implemented with the
traditional scheme, for the 37-point stencil, our cache-

MIC 5110p MIC 7120p
0

50

100

150

200

250

300

350

400

G
Fl

op
s

37−point Single Precision

1.8x
2.2x

3.7x

2.1x

3.0x

5.5x

(a)

base+simd
base+smid+blk
cache−friendly design

MIC5110p MIC 7120p
0

50

100

150

200

250

300

350

400

G
Fl

op
s

37−point Double Precsion

1.4x
1.9x

3.0x

1.7x

2.6x
3.4x

(b)

base+simd
base+smid+blk
cache−friendly design

MIC 5110p MIC 7120p
0

50

100

150

200

250

300

350

400

G
Fl

op
s

73−point Single Precison

0.3x

1.6x

5.6x

0.6x

2.2x

8.8x

(c)

base+simd
base+smid+blk
cache−friendly design

MIC 5110p MIC 7120p
0

50

100

150

200

250

300

350

400

G
Fl

op
s

73−point Double Precsion

0.2x

0.8x

2.2x

0.5x
0.7x

3.0x

(d)

base+simd
base+smid+blk
cache−friendly design

Figure 6. Performance of ETE stencils. (a)(b) illustrate results on the 37-point ETE stencil. (c)(d) illustrate results on the 73-point ETE stencil. Dashed
lines indicate the performance of a 12-core CPU version. The number above each bar indicates the speedup compared with a 12-core CPU version.

Tesla C2070 Tesla K40c
0

50

100

150

200

250

G
Fl

op
s

37−point Single Precision

0.7x

1.5x

2.1x

0.8x

1.9x

4.2x

4.6x

(a)

GMem
RO Cache
SMem+Traditional
SMem+Cache−friendly

Tesla C2070 Tesla K40c
0

50

100

150

200

250

G
Fl

op
s

37−point Double Precsion

0.5x 0.6x 0.7x
1.1x

2.7x

3.8x 4.0x

(b)

GMem
RO Cache
SMem+Traditional
SMem+Cache−friendly

Tesla C2070 Tesla K40c
0

50

100

150

200

250

G
Fl

op
s

73−point Single Precison

0.6x

1.3x

2.2x

0.9x

2.5x

4.5x

3.8x

(c)

GMem
RO Cache
SMem+2kernel(RO+SM)
SMem+2kernel(SM+SM)

Tesla C2070 Tesla K40c
0

50

100

150

200

250

G
Fl

op
s

73−point Double Precsion

0.3x 0.3x 0.4x
0.6x

1.5x

2.5x

1.9x

(d)

GMem
RO Cache
SMem+2kernel(RO+SM)
SMem+2kernel(SM+SM)

Figure 7. Performance of ETE stencils. (a)(b) illustrate results on the 37-point ETE stencil. (c)(d) illustrate results on the 73-point ETE stencil. Dashed
lines indicate the performance of a 12-core CPU version. The number above each bar indicates the speedup compared with a 12-core CPU version.

Table II
THE PERFORMANCE-MONITORING EVENTS OF CACHE ON XEON PHI 5110P WITH INTEL VTUNE 2016.

Methods BEST L1 CACHE L1 Hit L2 DATA READ L2 DATA WRITE L2 DATA READ L2 DATA WRITE
BLKING(y ⇥ z) MISS Ratio MISS CACHE FILL MISS CACHE FILL MISS MEM FILL MISS MEM FILL

37-single-traditional 1 ⇥ 8 73,376,750,000 0.945 18,324,000,000 4,227,500,000 8,398,000,000 3,240,500,000
37-single-cache-friendly 8 ⇥ 16 29,011,000,000 0.949 5,033,000,000 6,521,000,000 12,329,500,000 8,996,000,000

73-single-tradition 4 ⇥ 16 81,137,250,000 0.865 3,853,000,000 5,090,500,000 11,161,500,000 8,818,000,000
73-single-cache-friendly 8 ⇥ 32 36,616,500,000 0.945 3,597,500,000 4,989,500,000 11,532,500,000 8,379,000,000

37-double-tradition 1 ⇥ 8 190,261,500,000 0.884 34,558,500,000 9,055,000,000 18,841,500,000 6,847,000,000
37-double-cache-friendly 8 ⇥ 16 85,145,000,000 0.894 7,258,000,000 11,730,500,000 41,343,500,000 47,169,500,000

73-double-tradition 2 ⇥ 16 1,033,688,500,000 0.739 86,751,000,000 21,951,000,000 44,123,500,000 11,161,000,000
73-double-cache-friendly 4 ⇥ 16 76,509,500,000 0.934 10,381,500,000 13,125,500,000 27,778,500,000 34,574,500,000

friendly design results in 1.41⇥ (on Fermi), 1.11⇥ (on Ke-
pler) performance boost implemented with single-precision
and 1.16⇥ (on Fermi), 1.05⇥ (on Kepler) performance boost
implemented with double-precision.

The Table. III illustrates the register spilling situation
on C2070 (Fermi). When variables can not be assigned to
registers, the spilled variables are located in the L1 or even
in the L2 cache. Register spilling will hurt the performance

64 32 16 8 4 2 1

1
2

4
8

16
32

64

0
50

100
150
200
250

Z Blk Size

Traditinal Design
(37−point ETE)

Y Blk Size

Pe
rf

or
m

an
ce

(G
FL

O
PS

)

64 32 16 8 4 2 1

1
2

4
8

16
32

64

0
50

100
150
200
250

Z Blk Size

Cache−friendly Design
(37−point ETE)

Y Blk Size
Pe

rf
or

m
an

ce
(G

FL
O

PS
)

64 32 16 8 4 2 1

1
2

4
8

16
32

64

0

100

200

300

Z Blk Size

Traditinal Design
(73−point ETE)

Y Blk Size

Pe
rf

or
m

an
ce

(G
FL

O
PS

)

64 32 16 8 4 2 1

1
2

4
8

16
32

64

0

100

200

300

Z Blk Size

Cache−friendly Design
(73−point ETE)

Y Blk Size

Pe
rf

or
m

an
ce

(G
FL

O
PS

)

Figure 8. Searches to find the optimal cache block size using cache-friendly design for 37-point ETE with single-precision floating-point on Intel Xeon
Phi 5110. Each cache blocks x-dimension (contiguous in memory) is uncut.

because memory traffic that leaves register (goes to L1 or
even L2) is much more expensive. We can observe that our
cache-friendly scheme always results in less register spilling
for data load and store on GPU architecture.

Table III
REGISTER SPILLING SITUATION ON NVIDIA C2070.

Methods SPILL STORE SPILL LOAD
37-single-traditional 280 196

37-single-cache-friendly 200 144
73-single-traditional — —

73-single-cache-friendly 328 262
37-double-traditional 440 356

37-double-cache-friendly 206 152
73-double-traditional — —

73-double-cache-friendly 532 432

3) Comparison between Intel Xeon Phi and GPU: Al-
though Xeon Phi architectures actually have superior peak
performance and memory bandwidth than GPU architectures
for the same generation, they have long been considered an
inferior option to GPU for implementing stencil calculations.
We believe that the superior performance of Xeon Phi
obtained in our works is attributed to the local cache being
considerably larger than GPU (There are 2048 KB L1 cache
and 32768 KB L2 data cache in total on KNC Xeon Phi,
while only 960 KB L1 cache and 1536 KB L2 data cache
in total on Kepler GPU.); having a good mechanism to use
the cache efficiently will significantly unleash the power of
Xeon Phi.

We observe the substantial performance improvement
from the 37-point to the 73-point CSVC stencil operations
on Xeon Phi. It is because that the flop-to-byte ratios are
increased by our cache-friendly design and the memory
bound issues are largely alleviated. However, no such trend
is observed on GPU. For the 73-point stencil, although
memory traffic for grid points remains the same with the 37-
point stencil, the coefficient matrix cannot be accommodated
into the L1 cache anymore. Overhead has to be paid for
the caching coefficients with remedies such as stencil de-
composition and read-only cache compensation. Numerous
off-axial points result in a large coefficient matrix, which
will cause problems in the small user-controlled L1 cache of
GPU. Consequently, the cache-friendly design enables Xeon
Phi to outperform GPU for CSVC stencils, especially those

with more off-axial points.

C. Application Scenarios
We have already integrated our GPU-based CSVC stencils

with our cache-friendly design into the GeoEast-Lightning
seismic exploration software [3] developed by China Nation-
al Petroleum Corporation (CNPC). We ported the 37-point
ETE stencil single-precision operations for the 12-core Intel
Xeon X5675 CPU to the NVIDIA Tesla M2090 GPU. After
optimizing data transfer between the GPU device memory
and the CPU disk with CUDA streams, our design reduces
the entire seismic imaging time from 6195s to 1935s with
256 nodes for SEG salt model, a widely used benchmark
the field of geophysics.

VII. RELATED WORKS

In [16], the researchers first achieved an order of mag-
nitude speedup for a constant coefficient 3D-8th order FD
stencil with a spatially blocking scheme on Tesla-10 GPU.
A series of works [7] [8] [9] based on this research has been
published. Considering architecture improvement, [18] pre-
sented a series of optimization techniques for the 7-point 3D
stencil with constant coefficient computations on NVIDIA
Kepler GPUs. Their method achieves approximately 80%
of the estimated peak performance of the roofline model.
Moreover, [13] [18] [21] [22] applied temporal blocking
(time skewing) techniques to GPU stencil kernels. However,
it has been reported [21] [22] that the temporal blocking was
merely suitable for stencils with a limited range, like 3D
7-point stencil. Current stencil optimization techniques for
GPU narrow down their work to simple constant coefficient
shapes with points on axes. Although, several works, such
as [21], have already encountered complex shape stencils,
they do not place special consideration for their optimization
techniques. As an exception, [14] discussed the optimization
techniques for the 3D Lax-Wendroff stencil, which includes
off-axial points with constant coefficients. However, their
methods consumed a huge amount of shared memory and
were actually not unsuitable for a shared-memory starved
situation resulting from the caching variable coefficients.

For Intel Xeon Phi architectures, [19] outlined an ap-
proach to adapt stencils from 3D MPDATA algorithm to
the Xeon Phi architecture. Meanwhile, [20] focus on key

issues that should be considered in order to achieve optimal
performance on the Xeon Phi architecture for 3D stencil
codes. However, no CSVC stencil optimization has yet been
discussed for the Xeon Phi. Xeon Phi optimization has
also been taken in [14]; however, only several conventional
optimization methods were performed and no cache usage
was optimized.

VIII. CONCLUSIONS

In this study, we present a cache-friendly design to use
on-chip fast memory for the operation of stencils, which
are characterized with spatially variable coefficients and
complex shapes. Such an approach gives us the possibility
to ease memory bounds by reducing the cache miss, cache
consumption, cache access times and the boundary memory
traffic. We report our comprehensive experimental results
for two CSVC stencils generated from seismic forward
modeling on several popular many-core architectures, in-
cluding NVIDIA Fermi, Tesla GPU, and Knight Corner
Xeon Phi. On Xeon Phi, Over 4⇥ speedup achieved for a 73-
point CSVC stencil. On GPU, Our design enables a highly
efficient implementation of the 73-point CSVC, which has
been previously impossible using the traditional scheme.
We provide a new option to write highly efficient memory-
bound stencil-like loops, and demonstrate the final results to
integrate our code into a real oil exploration application.

IX. ACKNOWLEDGEMENTS

This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No. 61303003, 41374113)
and Tsinghua University Initiative Scientific Research Pro-
gram (no. 20131089356).

REFERENCES

[1] http://www.nvidia.com/object/gpu-applications-domain.html
[2] https://software.intel.com/en-us/articles/intel-xeon-phi-

coprocessor-applications-and-solutions-catalog
[3] http://www.bgp.com.cn/Technology/GeoEast-Lightning.html
[4] Meis T, Marcowitz U. Numerical solution of partial differential

equations[M]. Springer Science & Business Media, 2012.
[5] Moczo P, Robertsson J O A, Eisner L. The finite-difference

time-domain method for modeling of seismic wave propaga-
tion[J]. Advances in Geophysics, 2007, 48: 421-516.

[6] Micikevicius P. 3D finite difference computation on GPUs
using CUDA[C]//Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units. ACM, 2009:
79-84.

[7] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G.
Latu. Fast Seismic Modeling and Reverse Time Migration on A
GPU Cluster. In High Performance Computing & Simulation,
2009.

[8] Micha D, Komatitsch D. Accelerating a three-dimensional
finite-difference wave propagation code using GPU graphics
cards[J]. Geophysical Journal International, 2010, 182(1): 389-
402.

[9] Komatitsch D, Erlebacher G, Goddeke D, et al. High-order
finite-element seismic wave propagation modeling with MPI
on a large GPU cluster[J]. Journal of Computational Physics,
2010, 229(20): 7692-7714.

[10] Liu H, Dai N, Niu F, et al., 2014, An explicit time evolution
method for acoustic wave propagation: Geophysics, 79(3):
T117-T124.

[11] Baysal, Edip, Dan D. Kosloff, and John WC Sherwood.
”Reverse time migration.” Geophysics 48.11 (1983): 1514-
1524.

[12] Virieux, et al.An overview of full-waveform inversion in
exploration geophysics[J]. Geophysics, 2009, 74(6): WCC1-
WCC26.

[13] Nguyen A, Satish N, Chhugani J, et al. 3.5-D blocking
optimization for stencil computations on modern CPUs and
GPUs[C]//Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, 2010: 1-13.

[14] You Y, Fu H, Song S L, et al. Evaluating multi-core and many-
core architectures through accelerating the three-dimensional
LaxCWendroff correction stencil[J]. International Journal of
High Performance Computing Applications, 2014, 28(3): 301-
318.

[15] Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A
portable programming interface for performance evaluation on
modern processors. International Journal of High Performance
Computing Applications 14(3) (2000) 189-204

[16] Micikevicius P. 3D finite difference computation on GPUs
using CUDA[C]//Proceedings of 2nd workshop on general
purpose processing on graphics processing units. ACM, 2009:
79-84.

[17] H. Stengel, J. Treibig, G. Hager and G. Wellein,
Quantifying performance bottlenecks of stencil
computations using the Execution-Cache-Memory model.
http://arxiv.org/abs/1410.5010

[18] Maruyama N, Aoki T. Optimizing stencil computations for
NVIDIA Kepler GPUs[C]//Proceedings of the 1st International
Workshop on High-Performance Stencil Computations, Vien-
na. 2014: 89-95.

[19] Szustak L, Rojek K, Wyrzykowski R, et al. Toward efficient
distribution of MPDATA stencil computation on Intel MIC
architecture[J]. Proce. HiStencils, 2014, 14: 51-56.

[20] José, Mario Hernández1 Juan M Cebrián and Garcıa, M Ce-
cilia3 José M. Evaluating 3-D Stencil codes on Intel Xeon Phi:
Limitations and Trade-offs[J] XXVI Jornadas de Paralelismo,
Córdoba (Spain), pp. 568-573..

[21] G. Zumbusch. Vectorized Higher Order Finite Difference K-
ernels. In State-of-the-Art in Scientific and Parallel Computing
(PARA), 2012.

[22] J. Holewinski, L. N. Pouchet, and P. Sadayappan. Highper-
formance code generation for stencil computations on GPU
architectures. In Proceedings of the 26th ACM international
conference on Supercomputing, ICS 12, pages 311C320. ACM,
2012.

[23] Datta K, Murphy M, Volkov V, et al. Stencil computation op-
timization and auto-tuning on state-of-the-art multicore archi-
tectures[C]//Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, 2008: 4.

