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Abstract—The Explicit Time Evolution (ETE) method is an in-
novative Finite-Difference (FD) type method to simulate the wave
propagation in acoustic media with higher spatial and temporal
accuracy. However, different from FD, it is difficult to achieve an
efficient GPU design because of the poor memory access patterns
caused by the off-axis points and spatially-variant coefficients. In
this paper, we present a set of new optimization strategies for ETE
stencils according to the memory hierarchy of NVIDIA GPU.
To handle the problem caused by the complexity of the stencil
shapes, we design a one-to-multi updating scheme for shared
memory usage. To alleviate the performance damage resulted
from the poor memory access pattern of reading spatially-variant
coefficients, we propose a stencil decomposition method to reduce
un-coalesced global memory access. Based on the state-of-the-art
GPU architecture, combining with existing spatial and temporal
stencil blocking schemes, we manage to achieve 9.6x and 9.9x
speedups compared with a well-tuned 12-core CPUs version for
37-point and 73-point ETE stencils, respectively. Compared with
a well-tuned MIC version, the best speedups for the 2 type stencils
are 3.7x and 4.7x. Our designs leads to an ETE method that is
31.2x faster than conventional CPU-FD method and make it a
practical seismic imaging technology.

Index Terms—GPU, MIC, spatially-variant coefficient stencil,
Explicit Time Evolution, forward modeling, seismic imaging,
RTM, FWI

I. INTRODUCTION

Seismic forward modeling is the most computationally
expensive part of high quality seismic imaging methods
for hydrocarbon exploration, such as reverse-time migration
(RTM)[16] and full waveform inversion (FWI)[17]. Due to
the extremely high computational cost of forward modeling,
not till recently have the RTM and FWI been widely adopted
in oil exploration industry, despite of its high accuracy in
imaging of subsurface areas. Recently, the fast development of
High Performance Computing (HPC) technologies has brought
some new architectures that are able to provide such huge
computing power. For example, the Graphic Processing Unit
(GPU) designed by NVIDIA, and the Xeon Phi based on the
Intel Many Integrated Core (MIC) architecture are two popular
HPC platforms that have been widely applied in many key
applications [1],[2]. The advances of these new architectures
result in renewed attention from the seismic community to the
high-performance forward modeling methods.

On the one hand, improvement of computing power from
these new HPC architectures has led geologists to design more

complex forward modeling methods to improve the accuracy.
The Explicit Time Evolution (ETE) method, proposed by [10]
in recent years, is the one of the most promising methods. By
adopting a FD-style stencil in the discrete spatial-time domain
to explicitly extrapolate wavefields in time, it can achieve
high spatial and temporal accuracy in acoustic media without
using Fourier transforms. Numerical tests indicated that ETE
can achieve similar waveform accuracy as FD with five times
larger discrete time steps by involving more off-axis points and
adopting spatially-variant coefficients. The implementations of
ETE on multi-core architectures have already demonstrated
higher efficiency than the conventional Finite-Difference (FD)
method [3], which is one of the most widely used methods in
industry. In a real world application, every node in a computer
cluster is working in parallel to image a small part of 3D
work domain, which is an embarrassing parallel workload. As
a result, it becomes attractive to exploit the computing power
on a single node by accelerating the ETE method through the
new accelerators like GPU and MIC.

On the other hand, there exist tough challenges for computer
scientists to design highly efficient implementations of these
complex forward modeling methods on the new architectures.
Although a lot of existing efforts have already performed
thorough optimization studies on FD on GPU [4],[6],[5],[7],
efficient parallel solutions to the FD-like ETE method on
GPU are still less to be seen. Our experiments demonstrate
that GPU implementation with conventional optimization tech-
niques merely achieves 60% performance of a CPU version
with 12 cores. It is mainly due to the following two reasons:
First, the coefficients of ETE stencils are spatially-variant
while the coefficients of FD stencils are constant. The variant
coefficients can shift the dominant workspace from the grid
points being updated to the corresponding coefficients, which
leads to poor locality for efficient cache usage. In addition,
the memory access to the variant coefficients are largely un-
coalesced, which brings dramatic efficiency damage to vector-
ized memory access operations on GPU. Second, ETE stencils
involving off-axis points are more complicated in shape than
FD stencils. It requires a careful design to increase the data
reuse in the GPU on-chip fast buffer. Similar challenges also
exist in a variety of FD-like forward modeling methods, such
as [9], [12], [13].



To bridge the gap between the huge computing power pro-
vided by these new HPC platforms and poor memory access
patterns resulted from the new forward modeling method, in
this paper, we design a highly-efficient ETE method on GPU
according to its memory hierarchy. Using our proposed GPU-
based ETE design, the practical RTM forward modeling pro-
cessing time on a single node can be reduced from 1.38 hours
one shot to 3 minutes compared with CPU-FD implementation
used in practical applications, making ETE a favorable design
in many cases.

Our main contributions are:
• As far as we know, this is the first work that manages to

accelerate the ETE method kernels through the state-of-
the-art GPU platforms. Our work demonstrates promising
potential to finally integrate the proposed design into the
real-world seismic imaging applications.

• We propose a set of novel optimization methods on
GPU for stencils with spatially-variant coefficients and
complex shapes involving off-axis points, which have
not been comprehensively investigated before. Based on
GPU, combined with existing 2.5D spatial blocking and
1D temporal blocking strategies, we propose a one-to-
multi updating scheme to use shared memory for stencils
involving off-axis points. In addition, we design stencil
decomposition schemes for stencils with spatially-variant
coefficients. We gain approximately 10x speedup com-
pared with a CPU version with 12 cores.

• We also propose some insights on GPU and MIC archi-
tectures for optimizations of spatially-variant coefficients
stencils, which can provide a guidance for a board of
FD-like forward modeling methods.

This paper is organized as follows. In Sec. II, we review
the ETE method and describe the computational challenges to
implement it on the GPU platform. In Sec. III, we introduce
our GPU-based method. I/O optimizations between disk and
GPU are investigated in Sec. IV. We provide the corresponding
experimental results about performance and correctness in Sec.
V and conclude our work in Sec. VI.

II. BACKGROUNDS

A. The Explicit Time Evolution method

The analytical solution of acoustic wave equation in the
wavenumber domain assuming a constant velocity is:

p̂ (k, t + ∆t) = 2 cos (v∆t |k|) p̂(k, t)− p̂ (k, t−∆t) (1)

Where k = (kx, ky, kz) is the wavenumber vector. For variable
velocities, we consider velocity v as a ”local constant” and
convert equation (1) to the time-space domain:

p (x, t + ∆t) = 2c (x|v∆t) ∗ p (x, t)− p (x, t−∆t) (2)

Where c (x|v∆t) is a spatially variable 2D or 3D filter
corresponding to cos(v∆t|k|) in the wavenumber domain and
* denotes a spatial convolution. An ETE operator for wavefield
simulation based on equation (2) is formulated in a discrete
space. For a selected stencil in a neighborhood of any given
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Fig. 1. Shapes of 2 type ETE stencils. (a) is the 1st type 8th order ETE
stencil involving 37 points in total. (b) is one eight of the 2nd type ETE
stencil, which is symmetric about XOY, XOZ and YOZ plane. It involves 73
points in total.

point in the space domain, we seek coefficients that minimize
the difference between their discrete Fourier Transform and
cos(v∆t|k|) in the wavenumber domain. The accuracy of the
time evolution of the wavefield will be solely determined by
the fitting of the cosine function at each wavenumber. We seek
cj , the coefficients of each stencil point, in least square sense:

MIN |
∑
j

cje
i∆xj∆k − cos (v (x) ∆t |k|)|

2
(3)

where ∆xj = xj−x is the distance vector from updating point
to a stencil point. Once the coefficients cj are determined, the
ETE operator applied to wavefield simulation is similar to FD
schemes, as described in the following formula:

p (x, t + ∆t) = 2

Ne∑
j=1

cj (x) p(x+∆xj , t)−p (x, t−∆t) (4)

As for the shapes of ETE stencils, it has been proven that
a 8th-order stencil including off-axial stencil points appears
to be optimal to reduce the misfit of cosine function, which
can reach a magnitude of 10−6. Numerical experiments from
[11] indicate that in order to achieve similar accuracy the FD
scheme requires time steps about five times as fine as ETE.
Therefore, ETE operator is superior to the conventional FD
scheme in terms of accuracy. Figure 1 shows two types of ETE
stencils, the 1st type is used in isotropic media, while the 2nd
type is commonly used in tilted transversely isotropic media.
The stencils are traversed through the entire 3D grid multiple
times to update each grid point with calculations involving its
nearest neighbors. The updating rule for one time sweep is
indicated in equation (5).

37 and 73 coefficients are required for the 1st and the 2nd
type ETE stencil operations. However, in forward modeling,
the 3D gird is regular, which results in symmetric distribution
of the stencil’s coefficients. For a regular grid, as is shown in
Fig. 1(b) the coefficients are distributed symmetrically to XOY,
YOZ and XOZ planes. Thus 11 and 17 different coefficients
are required to perform the 1st and the 2nd type of ETE stencil,
respectively.



B. PARALLEL COMPUTING ARCHITECTURES

We explore the performance of our parallel ETE methods on
3 different parallel platforms: (1) a node with two 6-core Intel
Xeon E5-2697 v2 (Intel Sandy Bridge architecture) CPUs. (2)
Intel MIC 5110P (Knight Corner architecture) and MIC 7120P
(Knight Corner architecture) coprocessors. (3) NVIDIA Tesla
M2090c (Fermi architecture), Tesla K20c (Kepler architecture)
and Titan X (Maxwell architecture) GPUs. The details of these
platforms are illustrated in Table I.

C. COMPUTATIONAL CHALLENGES IN ETE METHOD

There are mainly three challenges to implement ETE stencil
operations on GPU.

The first challenge is in the design of data reuse of grid
points in stencil kernels. Computing 3D ETE stencils involves
additions on a number of adjacent off-axis points, which do not
exist in FD stencils. These points can not be accommodated
into one slice of shared memory and lead to a huge registers
usage (may up to 168 registers) and additional global memory
access.

The second challenge comes from the complex memory ac-
cess pattern of variant coefficients. Different from FD stencils,
the coefficients of ETE stencil points are not constant values.
They are calculated before spatial traverses of ETE stencils
using the least-square method. A 2D coefficient matrix and a
3D coefficient index array have to be stored in the memory
before the stencil sweeps. For the coefficient matrix (c in
equation (5)), the number of rows is the number of spatial
points involved in the stencil, and the number of columns is
the number of different discretized velocities that we use to
calculate the ETE coefficients in the model. The size of the in-
dex array is the same as the grid size. As shown in Fig. 2, when
conducting the stencil operation, we access the coefficient
index array according to its coordinate to acquire the index and
then access a group of coefficients according to the index. The
Flop to Byte Ratio of ETE’s CPU implementations are 0.48
and 0.94 for the 37-point and 73-point stencils, which are far
behind the theoretical Flop to Byte Ratio of all architectures in
Table I. Our experiment demonstrates that the performance of
a 73-point stencil implementation with conventional methods
on K20c GPU only achieves 60% performance of a 12-core
CPUs version.

The third challenge comes from communication between
coprocessors and host disk. After a few time steps, a snapshot
of 3D grid is required to be written into host disk for imaging
through the PCI-E bus. The bandwidth of PCI-E is merely 6
GB/s,which will become a bottle-neck for ETE’s execution on
coprocessors.

III. GPU-BASED ETE STENCIL

In this section we describe our parallelization strategies for
the 3D 8th order ETE stencils computation to fully utilize the
memory hierarchy of GPU. A smart usage of the fast memory
to increase the data reuse in stencils has been proven to be
the key for memory bound stencil operation. Shared memory
and registers are two kinds of fast memory on GPU. Shared
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Fig. 2. Memory access pattern of spatially variable coefficients in a ETE
stencil

memory can be accessed by all threads in a thread block, while
registers are private resource of a thread. However, since on-
chip fast memory available per thread block is not sufficient
to store a large 3D subdomain of the problem, blocking tech-
niques are proposed to maintain a chunk of data in fast buffer
in turn. For our design, we adopt a 2.5D blocking technique
[8],[19], which has been proven to be efficient for FD stencils.
The grid points in one xy plane are computed in parallel by
threads in a GPU thread block, whereas the computation over
the z-direction is swept sequentially. Based on 2.5D blocking
scheme, we develop our customized optimizations for stencils
with spatially-variant coefficients and a large number of off-
axis points. First, we propose a 1-to-multi grid points updating
scheme to reuse the grid points through fast memory on GPU
in 3D domain. Then, we design stencil decomposition schemes
to issue the variant coefficients problem. Finally, we reduce
global memory accesses by a 1D temporal blocking based on
2.5 spatial blocking.

A. one-to-multi updating scheme

To resolve the problem brought by off-axis points, a fast
memory utilization method different from traditional stencil
implementations is introduced in this subsection. We first
introduce two traditional shared memory usage methods:

(1) [14] suggested to store 9 xy-planes in shared memory for
stencil in the same shape of ETE but with constant coefficients.
However, shared memory is a significantly precious resource
for variant coefficient ETE stencils, as mentioned in next
subsection.

(2) Another popular method suggested by [4] is that when
the stencil is traversing through z axis according to the 2.5D
blocking scheme, stencil points of the current xy-plane are
stored in one slice of shared memory and the rest points of
stencil are stored in registers. As shown in Fig. 3, we need to
store 12 points in registers for 37-point stencil. At each step,
5 points are required to be loaded into the registers of each
thread from global memory. Five global memory loadings are
required for calculation of one point. Afterwards, The grid
points of next time step at current xy-plane are updated by
scaling and summing up points from upper and lower 4 slices
stored in registers of each thread in addition to the points
stored in the shared memory. However, applying their design
to the 73-point ETE stencil, 168 registers (9 register queues
of length 8, 8 register queues of length 6, 8 register queues
of length 4 and 8 register queues of length 2) are required



TABLE I
THE PERFORMANCE AND BANDWIDTH OF THE EVALUATED PLATFORMS.

Architectures Clock Peak Performance Cache Size Memory ARCH-FBR‡TFlops per core (KB) bandwidth(GB/s)
GHz float double L1 L2 theoretical measured single double

E5-2697 v2∗ 2.7 0.512 0.256 32 256 119 114 4.49 2.24Ivy bridge
MIC 5110P 1.053 2.002 1.011 32 512 320 130 15.4 7.7Knights Corner
MIC 7120P 1.238 2.416 1.208 32 512 352 150 16.11 8.05Knights Corner
Tesla 2090c 1.3 1.331 0.665 64† 768 177 120 11.0 5.54Fermi
Tesla K20c 0.732 3.52 1.17 64† 1536 208 144 24.4 8.13Kepler

Titan X 1.0 6.14 0.192 64† 3072 336 241 25.4 0.80Maxwell ∗ E5-2697 v2 has a 30M L3 cache shared among 12 cores;†64KB can be configured as 48KB shared memory + 16KB L1 or 16KB shared memory + 48KB L1‡ is the ratio between peak computation performance and the measured memory bandwidth of the architecture.

for each thread. 33 times global memory access are required
to load points from global memory into registers at each step.
We call this stencil calculation method a multi-to-one updating
scheme.

The multi-to-one scheme suffers from 2 performance con-
cerns. 1. Additional global memory access leads to high
Byte/Flops ratio and reduces the performance. 2. Register
spilling caused by overusing of registers can slow down
the computation. To reduce the register usage and global
memory access times, we introduce a one-to-multi scheme
which updates 9 xy-planes with current xy-plane in shared
memory. Updating a register indicates accumulating values
of grid points in shared memory to current values of the
registers after scaling with corresponding coefficients. In our
ETE stencil kernels, only one register queue of length 9 is
allocated for each thread and one time global memory access
is needed for the calculation of one point. When the points
of xy-plane Z are loaded into shared memory, we read points
from shared memory to update every register in the register
queue. The rule for updating is illustrated in Fig. 3. After 9
steps, register 0 is accumulated with all points in the stencil
and contains the value of grid point at next time step. In 2.5D
scheme, register 0 is written to global memory and reset to
zero. Then the register queue is circularly shifted for the next
xy-slice updating.

In the multi-to-one scheme, grid points are stored in reg-
isters, while in one-to-multi scheme intermediate results are
stored in registers. The number of intermediate results is the
same as the order of stencil (L) for any stencil in complicated
shape with off-axis points. As a result, only one register queue
with length L is required for each thread. Our one-to-multi
scheme reduces nearly 95.3%, 40% register usage and 4 and
32 times global memory access for the 2nd and the 1st type
ETE stencil, respectively.

B. Stencil decomposition schemes

Different from FD stencils, the coefficients of ETE stencils
are not constant values. The coefficients of different velocities
are calculated using the least-square method (equation 2)

1

1

2

2

3

3

4

4

5

5

5

5

5

5

5

5

Global memory

Store in regiter

Store in shared 

memory

Fig. 3. multi-to-one scheme for the 1st ETE stencil in one CUDA thread

before spatial traversal of ETE stencils. As mentioned in the
previous section, a 2D coefficient matrix and a coefficient
index array have to be stored in the GPU global memory
before the sweeps. We first access the index array to know the
required column number of coefficient matrix and then access
the corresponding column of coefficient matrix to get a group
of coefficients. The real geological structures usually come
with sharp velocity discontinuities. Such velocity distribution
leads to discontinuous access to the coefficient matrix, which
results in un-coalesced memory access of neighboring threads
on GPU (described in Fig. 2). GPU devices provide a very high
off-chip memory bandwidth (up to 336 GB/sec on Titan X),
which is only achievable with coalesced access (data from the
global memory is transferred to the GPU device in contiguous
blocks) and high bandwidth can only be achieved when
requests by concurrent 32 adjacent threads fall within such
continuous blocks. When non-continuous memory locations
are accessed by threads, the achieved bandwidth is much lower
than the peak, leading to stalling and wasted compute cycles.

To issue this problem, we plan to load the coefficient
matrix into shared memory initially and then access the shared
memory for the coefficients. The memory access for initial
shared memory loading is coalesced. However, even if taking
the symmetry of coefficients into consideration, the coefficient
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matrix cannot always be accommodated into shared memory
on GPU. A large number of coefficients also have to be loaded
from global memory with un-coalesced access pattern. In
order to completely eliminate the un-coalesced global memory
access, we design decomposition schemes for ETE stencils. A
ETE stencil is reconfigured into two sub-stencils. The rows of
the coefficient matrix are broken down by the sub-stencils.
Each of sub-stencils can perform independent scaling and
sum calculation to update the grid points with corresponding
rows of matrix coefficients. By using such a decomposition
scheme, we can then fit the coefficients of one sub-stencil
into the shared memory to execute one time sweep and reload
the coefficients of the other sub-stencil into shared memory
for another sweep. For Kepler and Maxwell architectures, the
hardware provides a 48KB read-only cache, which can to some
extent alleviate the damage from un-coalesced memory access
with a larger cacheline. If the overhead cost of one time sweep
is less than the benefits gained from replacing read-only cache
with shared memory, we can fit the coefficients of the other
component into 48KB read-only cache. Under this situation,
we can execute two sub-stencil simultaneously in one time
sweep. The decomposition schemes for two types of ETE
stencils are illustrated in Fig. 5.

C. 3.5D temporal blocking

Since sweeps of 3D grid with ETE stencil will be executed
for multiple time steps, we can further combine the 2.5D spa-
tial blocking scheme with an additional 1D temporal blocking
scheme by executing 2 time steps of blocked data together
so that intermediate data can reside in shared memory and
registers. A 3.5D scheme based on one-to-multi scheme can
be applied to ETE method with no stencil decomposition op-
timizations. Details of our 3.5D implementation are illustrated
in Fig. 6. We rearrange the calculation order of xy-planes so
that the 3.5D ETE-stencil can work in pipeline. After the initial
filling of the pipeline, at each calculation step a xy-plane is
loaded into fast memory from the grid of time step t and a
xy-plane is written to the grid of time step t + 2∆t. The grid
points of time step t + ∆t are stored in registers and shared
memory on GPU. The xy-planes of 3D grid are written to
global memory every 2 time steps.

This scheme saves all global memory transfers to and from
gird at time step t+∆t, leaving one load and one store eviction
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Fig. 6. Temporal 3.5D ETE stencil with one-to-multi updating scheme. S#
indicates the order of execution. The values of grid points of time step t+∆t
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storing intermediate results and output points of time step t + 2∆t to global
memory.

for two point updates. In addition, because we load coefficients
into shared memory initially, the coefficient matrix loaded at
time step t can be reused by 2 time steps afterwards. However,
one drawback of the scheme is that even though we load planes
of 40 × 40 elements, we can write back only planes of 32 ×
32 elements because we cannot update the border elements due
to missing neighbor elements. In addition, more registers are
allocated in the 3.5D ETE kernel, which may brings registers
spilling to damage efficiency.

IV. WRITING SNAPSHOTS TO DISK FROM COPROCESSORS

To simulate the wave propagation on GPU, we need to
output the snapshots of 3D domain timely into disk at set
intervals. According to GPU architectures, data is first written
to host memory through PCI-E bus and then written from host
memory to disk by CPU. The bandwidth of the PCI-E interface
is merely 6GB/s, which is not enough for conveying the data
exchanges between the host CPU and the GPU cards. To hide
the communication time, we overlap the communication and
computation by using the streams and asynchronous GPU-host
data transfer function. On NVIDIA GPU, Stream is a sequence
of operations that execute in issue-order on the GPU. In Fig.
7(a) two streams are launched: one is in charge of ETE stencil
computation, the other is in charge of data transfers. As shown
in Fig. 7(b), with 4 or 5 discrete time intervals, we can largely
hide the communication with calculation.
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V. PERFORMANCE DISCUSSIONS
We implement ETE methods on 5 parallel architectures

mentioned in Sec. II-B. In order to make a fair comparison,
we optimize the implementations of ETE stencils on multi-
core CPUs and MIC.

A. MIC-based ETE stencil

Although optimization techniques on multi-core CPU such
as multi-threading with OpenMP, vectorization with aligned
load instructions, loop unrolling, etc. are also useful for
MIC, simple porting parallel code from CPU to MIC seldom
achieves satisfying performance. It is mainly because of the
difference of memory hierarchy between MIC and multi-core
CPUs.

On one hand, for MIC platforms, as we have a larger number
(60) of physical cores (4 hardware threads per core), and
the instructions from the same thread can not be executed in
two consecutive cycles, there would be more frequent context
switches than CPUs. When we combine the L2 caches in
different cores to a large global cache, the memory hierarchy
would demonstrate a strong NUMA effect. Due to the NUMA
effect, specifying a suitable affinity configuration for the
threads and the deciding the number of active threads are
important for achieving good performance.

On the other hand, because there is no large L3 cache that
can be shared by different cores on the MIC architecture, we
are prompted to consider an efficient blocking plan. Different
from 2.5D or 3D blocking, a heuristic blocking scheme is
adopted for ETE stencil operation on MIC. [15] proposed a

general blocking scheme to reduce the cache capacity misses
for 3D stencil code. Assuming threaded blocking is of size
NBlock1 × NBlock2 × NBlock3, it is suggested rectangular
blocks of shape NBlock1 = (N −2), NBlock2=s , NBlock3

= (s × L/2B) is best for an N×N×N 3D domain, where
L is the cacheline size, B is the size of data type of gird
points, and s is the blocking factor. On MIC, we can expand
the idea to make an initial estimate for the blocking factor and
then adjust the size of NBlock2 and NBlock3 to search for
the blocking size with best performance. We design the the
initial guess of blocking size as N1×s×s ×L/2B. This also
implies no blocking in the slowest direction, and leads to long
continuous memory read streams on this particular choice. We
can determine the value of s by following equation:

N1 × s× s× L/2 <= C (5)

where L is the size of cacheline which is 64B in MIC. C
is the size of cache which is 512KB in MIC. The size of 3D
domain is N1 ×N2 ×N3.

We choose the best blocking size around the theoretical best
blocking size to achieve the best performance.

B. Performance Metrics of different architectures

The performance is evaluated as number of floating-point
operations per second (Flops), which can be measured by PAPI
[18]. For our 3D problem model, the dimension size is set to be
320×320×912. Our test velocity model is a complete random
distribution of 902 different velocity values.



Fig. 8 demonstrates the recorded performance for the 2
types of ETE stencil kernels on 5 different platforms. For the
CPU and MIC platforms, we show the base performance (with
only OpenMP and basic optimization techniques), and the
optimized performance after we apply SIMD vectorization and
blocking. For the GPU platforms, we show the performance
of accessing coefficients directly from global memory, from
read-only cache and from shared memory. As with the 37-
point ETE stencil we fit the entire coefficient matrix into
shared memory in this test case, so we can also adopt a
3.5D blocking scheme with 1D temporal blocking. In addition,
we compare the performance of one-to-multi and multi-to-
one updating scheme. For the 73-point stencil, we implement
two kinds of stencil decomposition schemes. Shared Mem
2kernels indicates we execute two spatial sweeps and store
coefficients of two components in shared memory in turn. For
Kepler and Maxwell architectures, Shared Mem & Read-only
cache 2kernels means we decompose the stencil into two sub-
stencils and store the corresponding coefficient sub-matrices
into shared memory and read-only cache separately. For the
73-point stencil, we implement all optimization techniques
with the one-to-multi updating scheme.

The results are: for the 37-point ETE stencil we obtain up
to 9.6x and 9.9x speedup while for the 73-point ETE stencil
we obtain 3.7x and 4.7x speedup compared with well-tuned
12-core CPUs version on MICs and GPUs, respectively.

C. Performance Analysis

1) Analysis of our optimization strategies: We achieve
more than 5 times performance boost on GPU by applying our
optimization strategies. For the 37-point ETE stencil, our one-
to-multi scheme brings 10% performance boost as the global
memory access is reduced by three times. As the multi-to-
one scheme will definitely slow down the stencil operation
with registers spilling and too much global memory access,
we implement all 73-point stencil operations with the one-to-
multi scheme. Compared with 37-point stencil, the number
of off-axis points in 73-point stencil is increased from 12
to 48. However, the GFlops values of two stencil operations
are actually the same with the same optimization methods,
which indicates our one-to-multi scheme can eliminate the
performance damage caused by off-axis points.

Decomposition of stencil and storing the coefficient ma-
trix into shared memory offer 80% to 130% performance
improvement, which primarily gains from the reduction of
un-coalesced memory access. When utilizing decomposition
plan to the 73-point stencil, the coefficients of the second
sub-stencil cannot fully fill the 48KB shared memory for the
second sweep. Although reading coefficients from read-only
cache spends more time than reading from shared memory, it
reduces the overhead costs caused by launching another stencil
sweep. As a result, in this case, the Shared Mem 2kernels
scheme is inferior to Shared Mem & Read-only 2kernels
scheme. However, with more different velocities values, the
second scheme will gain more benefits from using the shared
memory instead of the read-only cache.

2) Comparison of Fermi, Kepler and Maxwell: Titan X
(Maxwell) delivers around 200% performance boost compared
with K20c (Kepler). Besides the improvement in computation
capacity, the increased memory bandwidth and more paral-
lelism from Fermi to Maxwell bring the main performance
boost for memory bound ETE stencil operations: 1. Memory
Bandwidth: the measured global memory bandwidth increased
from 120 to 241 GBps. 2. More Parallelism: (1) Maxwell has
24×128 CUDA cores. Kepler K20c has 13×192 CUDA cores
while Fermi has only 16×32 cores. (2) In Kepler and Maxwell
The warp-schedule number of each SM increases from 2 to 4.

Fermi M2090 has 32K registers, while Kepler K20c and
Maxwell Titan X have 64K, which indicates more register
pressure on Fermi. As a result, 3.5D blocking brings no benefit
to Fermi architecture due to the register pressure primarily
brought by allocating another register queue.

D. Comparison of ETE and FD method

To evaluate the effectiveness of our GPU design, we com-
pare the GPU-based ETE with FD method implemented on
12-core CPUs and GPU. To gain similar imaging accuracy,
we simulate the wave propagation process with ∆t = 0.2 ms
for FD and with ∆t = 1 ms for ETE in isotropic media.
The time performance for 10s wave propagation simulation is
illustrated in Table II. Our ETE-based propagation is 31.21x
faster than CPU-FD method and 2.41x faster than GPU-FD
method provided by NVIDIA CUDA samples library.

TABLE II
COMPARISON OF GPU-ETE AND FD METHODS

Method CPU-FD GPU-FD GPU-ETE
Time(s) 5503.1 426.90 176.31

VI. CONCLUSIONS

In this paper, we present our work on parallel GPU-
based ETE solution, which makes ETE method a competitive
forward modeling implementation for RTM and FWI. Our
work proposes a better way to use GPU memory architectures
for ETE stencils which are characterized with spatially-variant
coefficients and more complex shapes. We optimize our ETE
method on 6 different architectures, including Ivy bridge 12-
core CPUs, NVIDIA Fermi, Tesla and Maxwell GPU and
Knight Corner MIC. Our GPU-ETE achieves 385 and 434
GFLOPs for 37-point and 73-point ETE stencils, respectively.
After optimizing of data transfer between GPU device memory
and CPU disk, our GPU-ETE is 31.21x faster than traditional
FD method to achieve similar imaging accuracy. Our designs
can also server as a guidance for a broad range of FD-like
forward modeling methods with variant coefficients. In the
near future, we will integrate our code into the lightning
seismic exploration software developed by CNPC.
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