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• Big Model Era (BERT, GPT3)
• Transformers as backbones are very powerful
• Pretrain phase: Feature Extracting on Massive Data
• Finetune phase：Finetuning on Personal Data

• Parameters of PTM grow exponentially
• Mixture-of-experts (MOE) Models
• Dense Models

• More computing/comm. requirements
• More Challenging for System Design

Background: Pre-trained Models (PTM)
A New Paradigm for AI



• A game for a few big players
• Economical Cost: 

• Microsoft used 10,000 V100 Data Center for GPT3(175B) Pretraining，
Finetuning used at least 256xV100

• 1 time GPT3 pretrain cost 12M$
• Carbon Cost:

• Carbon footprint for training GPT-3 same as driving to our natural satellite 
and back

• How to Democratize Big Models?
• Pretrain Phase：Improve hardware efficiency to lower the cost
• Finetuning Phase：Lower hardware requirement to reuse 

pretrained efforts

Background: Pre-trained Models



Memory Wall: (2B model - 32GB GPU memory)
1. model data (Constant, numel of param M)
• param fp16 (2M)
• grad fp16 (2M)
• param fp32 (4M)
• momentum fp32 (4M)
• Variance fp32 (4M)

2. non-model data (Changing)
• Activations
• Temp. mem. of operators

Optimizer States (OS)

Background: Pre-trained Models

Computing Graph with 
Mixed precision training

FWD: forward propagation
BWD: backward propagation



• Parallel Training: store model-data in multi-GPU
• Data Parallel : ZeRO-DP
• Modell Parallel：Megatron-LM, Mesh-TensorFlow (human efforts)
• Pipeline Parallel：Gpipe， PipeDream (bubble Problem)

• Heterogenous Training: store model-data in CPU+GPU+SSD
• ZeRO-Offload/ZeRO-Infinity, L2L

• Activation Footprint Optimization:
• Gradient Checkpointing, a.k.a Activation Rematerization
• Activation CPU Offloading

Backgrounds: Related works for PTM training
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• PatrickStar focuses on Heterogenous Training
• Economical: CPU memory is cheap, GPU memory is expensive
• Effective: Hierarchical memory similar to classical computer architect idea 

(virtual memory, multi-level cache, etc.)
• Proven: DeepSpeed stage3 (Zero-Offload) vs. stage2 (zeroDP) claimed 10x 

model scale

• Hardware: a typical CPU-GPU cluster used for training

Backgrounds: Related works for PTM training

A typical network topology, 1-CPU-multi-GPU

PCI-e：CPU-GPU
P2P peak bandwidth 13GB/s，message size >4MB

NVLink：inter-GPU
Collective peak bandwidth 60-120 GB/s，message size > 16MB



• Design: statically partition model data on CPU and GPU in advance of training.
• param fp16 (2M) on GPU; OS+grad fp16 (14M) on CPU
• transmit grad fp16(2M) GPU->CPU during FWD+BWD
• transmit param fp16(2M) CPU->GPU after ADAM

• Suboptimal computing and memory efficiency.
• 4xV100 1.5TB DRAM DGX-2H: 30B model (25% of peak comp. performance)
• 4xV100 240GB DRAM YARD: scale to 6B model only (41% of peak comp. perf.)

Motivation: Flaws of the ZeRO-offload in DeepSpeed

Non-model data
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real non-model data changing curve



• Idea: Arrange model data tensors into Chunks and dynamically adjust 
their CPU-GPU layouts, similar to virtual memory
• Chunk-based vs Transmitting in Tensors:
• Chunk: a block of memory contains the same number of elements. 

e.g. 128 M.
• Large message size ensures high PCI-e/NVLink bandwidth utilization

• Dynamic vs Static Partition:
• Real-time adjustment of model data layout according to the near 

future memory situations.
• If GPU/CPU memory is about to overflow, tensors not in use are 

evicted to CPU/GPU

Design Overview: Chunk-based dynamic memory mgr.
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• PatrickStar: the porter at Krusty Krab
• PyTorch-Mr. Krabs; CPU/GPU-containers; Tensor-Item; Chunk-Box; 

Packing Info：A map 
for Tensor (Items) and 
Chunk (Box)

Hands: Moving Chunks 
(Boxes) around Contains 
(CPU/GPU Memory)

Manual: Optimal 
work procedure. 
Help the porter 
saving energy.

Item Info: Records 
Item (tensor) states 
during training (store 
opening)

Software Architecture



• Target: Adjust model-data layout timely, before each Op. execution.
• Runtime Mem. Tracer: Depict non-model data volume changing.
• Eviction Strategy: Evict tensors smartly.
• Device-aware Op Placement: Place Op. on CPU/GPU smartly.

Dive into the DMM: Dynamic Memory Management
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• Tracing non-model data changing in warmup iterations:
• model-data and non-model data compete for memory resources. 
• Warmup: non-model data (N) = memory usage (R) – allocated 

model data (C)
• Non-warmup: available model data (A) = overall mem. (L) – non-

model data (N)

DMM: Runtime Memory Tracer



• Operators in DNN can be classified into two categories
• Compute-intensive：nn.Linear（must run on GPU）
• Memory-intensive：ADAM（CPU/GPU）

• Smartly layout memory-intensive Ops
• GPU Margin Space = GPU mem. size. – (peak non-model data + param 

fp16 model data)
• Put OS tensors on GPU as much as possible to avoid updated param 

fp16 data moving

DMM: Device-aware Operator Placement

Non-model data
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• Adjust model-data layout : Prepare enough memory space to 
satisfy need of the operator execution.
• If memory is full, how to evict not-in-used model data tensors?
• Evict the longest future reference tensors on this 

computing device, since we know exactly when each tensor 
is in use.
• Belady‘s OPT algorithm in Cache design

DMM: Eviction Strategy



Dive into the CMM: Chunk-based Memory 
Management

Stateful
Tensors

ChunkLists
(containing payload)

Chunk-based Memory Manager (CMM)



• Chunk-Tensor-Mapper：Generated before training
• 4xChunkList: param fp16, param fp32, variance, momentum
• The tensors are arranged in the initialization order
• Avoid tensors of the same Operator reside on 2 different chunks

CMM：Chunk-Tensor-Mapper

A light-weight tool search best chunk size for different models



• State implies the possible location of chunks in CPU+GPU memory.
• A tensor is stateful, belonging to one of 5 states.

• State transition is triggered before every operator execution
• The state of a Chunk is determined by the state of all Tensors it manages

• ∀(FREE): If all tensors are FREE, memory can be reused by other chunks or be released
• ∃(COMPUTE): If One of its tensor is COMPUTE, the Chunk must be placed on the 

target device
• ~∃( COMPUTE）⋂ ∃(HOLD-like)： If there is no COMPUTE tensor and there is a tensor 

that is HOLD-like, the Chunk can be freely placed in either CPU or GPU memory

CMM : Stateful Tensor

HOLD-like state



• Tensor works as a finite-state machine
• 5 states are necessary, since activation rematerization will 

introduce FWD on part of operators during the BWD phase.

CMM : Tensor State Transition 



• Chunk reuse eliminates grad fp16 ChunkList memory footprint
• Transformer Models are linear-structured
• Grad fp16 has no life-cycle overlap with Param fp16

• Peak model data footprint 14M < 18M (DeepSpeed)

CMM: Chunk Reuse



• CMM is compatible with ZeRO-DP (SC 20)
• Multiple-processing: each process in charge of a GPU
• Training works as DP, but the param are sharded among processes.
• Need extra gather communication to collect remote shards.
• DeepSpeed： Communicating in granularity of tensors.
• PatrickStar：Communicating in Chunks

CMM: Scaling To Multiple GPUs

Picture Courtesy of  Microsoft Blog
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• Testbed: 
• Tencent YARD cloud: 8x40GB V100 240GB DRAM 12-core CPU
• SuperPod: 8x32GB A100 1TB DRAM 192-core CPU per node(8x)

• Baseline
• PyTorch Distributed-DataParallel (DDP) 
• DeepSpeed stage3 official example（DP+MP hybrid parallelism)

• Model Config: 1B~68B Parameters (huggingface gpt)

Evaluation: Methodology 



• YARD-1xGPU: PatrickStar vs. DeepSpeed(3x), vs. PyTorch DDP (12x)
• YARD-8xGPU: PatrickStar vs. DeepSpeed 8B to 18B (2.25x). 
• SuperPod-8xGPU: PatrickStar vs. DeepSpeed 30B to 68B (2.27x). 
• Memory efficiency：18B@YARD 18×14=252GB vs. 291.2 GB  

86% utilization of overall memory space

Results: Model Scale



• PatrickStar is more efficient on DeepSpeed not supports 
cases (1.08x-1.47x, on average 1.23x)

Results: Throughput on YARD

Peak Perf
47%



• PatrickStar speedup to DeepSpeed more significantly with 
more CPU memory (1.07x-2.43x, on average 1.53x)

Results: Throughput on SuperPod

Peak Perf
37%



•👍Device-aware placement：XgBase vs. XgOSC(OS always on 
CPU)
•👍Runtime Memory Tracer：XgBase vs. XgSP (static partition)

•👍CMM: Sbob system only DMM

Ablation Analysis



•👏32xA100(4 node) is able to run GPT3 training
•💪Superlinear scalability, 8 PetaFlops for GPT3@8node

Results: Scale to 8 nodes (64 GPU)



• NVIDIA proves that PatrickStar uses fewer nodes to train GPT3 
and the efficiency is comparable to that of Megatron-LM, and 
the efficiency reaches 40% of peak performance

Test Report from NVIDIA



• https://github.com/Tencent/PatrickStar
• Preprint: PatrickStar: Parallel Training of Pre-trained Models 

via a Chunk-based Memory Management
• https://github.com/hpcaitech/ColossalAI
• Already integrated the DMM module

Related Open-Sourced Project

https://github.com/Tencent/PatrickStar
https://github.com/hpcaitech/ColossalAI


Q&A



SuperPod Network Topology



SuperPod Spec

Basic information

Server Model H3C G5500 Gen5

CPU AMD EPYC 7K62 48-Core Processor

GPU Delta A100 40GB

Mem 1T DDR4 2933 MT/s

Disk 4 x 3.2T NVMe SSD

NIC 8 * ConnectX6 200Gb/s HCA

OS Tlinux 4.14.105-1

GPU driver 470.57.02

MOFED 5.4-1.0.3.0

Docker 2020.10.8

NGC PyTorch 21.08(CUDA 11.4.1, cuDNN 8.2.2.26, NCCL 
2.10.3)

环境要求 NCCL版本要求：> 2.9x 低版本nccl跑步起来


