
Jiarui Fang
fangjiarui123@gmail.com

2022/06/27

Parallel Training System for Big Models
via Chunk-based Dynamic Memory

Management

mailto:fangjiarui123@gmail.com

• Big Model Era (BERT, GPT3)
• Transformers as backbones are very powerful
• Pretrain phase: Feature Extracting on Massive Data
• Finetune phase：Finetuning on Personal Data

• Parameters of PTM grow exponentially
• Mixture-of-experts (MOE) Models
• Dense Models

• More computing/comm. requirements
• More Challenging for System Design

Background: Pre-trained Models (PTM)
A New Paradigm for AI

• A game for a few big players
• Economical Cost:

• Microsoft used 10,000 V100 Data Center for GPT3(175B) Pretraining，
Finetuning used at least 256xV100

• 1 time GPT3 pretrain cost 12M$
• Carbon Cost:

• Carbon footprint for training GPT-3 same as driving to our natural satellite
and back

• How to Democratize Big Models?
• Pretrain Phase：Improve hardware efficiency to lower the cost
• Finetuning Phase：Lower hardware requirement to reuse

pretrained efforts

Background: Pre-trained Models

Memory Wall: (2B model - 32GB GPU memory)
1. model data (Constant, numel of param M)
• param fp16 (2M)
• grad fp16 (2M)
• param fp32 (4M)
• momentum fp32 (4M)
• Variance fp32 (4M)

2. non-model data (Changing)
• Activations
• Temp. mem. of operators

Optimizer States (OS)

Background: Pre-trained Models

Computing Graph with
Mixed precision training

FWD: forward propagation
BWD: backward propagation

• Parallel Training: store model-data in multi-GPU
• Data Parallel : ZeRO-DP
• Modell Parallel：Megatron-LM, Mesh-TensorFlow (human efforts)
• Pipeline Parallel：Gpipe， PipeDream (bubble Problem)

• Heterogenous Training: store model-data in CPU+GPU+SSD
• ZeRO-Offload/ZeRO-Infinity, L2L

• Activation Footprint Optimization:
• Gradient Checkpointing, a.k.a Activation Rematerization
• Activation CPU Offloading

Backgrounds: Related works for PTM training

• Parallel Training: store model-data in multi-GPU
• Data Parallel : ZeRO-DP
• Modell Parallel：Megatron-LM, Mesh-TensorFlow (human efforts)
• Pipeline Parallel：Gpipe， PipeDream (bubble Problem)

• Heterogenous Training: store model-data in CPU+GPU+SSD
• ZeRO-Offload/ZeRO-Infinity, L2L

• Activation Footprint Optimization:
• Gradient Checkpointing, a.k.a activation rematerization
• Activation CPU Offloading

Backgrounds: Related works for PTM training

• PatrickStar focuses on Heterogenous Training
• Economical: CPU memory is cheap, GPU memory is expensive
• Effective: Hierarchical memory similar to classical computer architect idea

(virtual memory, multi-level cache, etc.)
• Proven: DeepSpeed stage3 (Zero-Offload) vs. stage2 (zeroDP) claimed 10x

model scale

• Hardware: a typical CPU-GPU cluster used for training

Backgrounds: Related works for PTM training

A typical network topology, 1-CPU-multi-GPU

PCI-e：CPU-GPU
P2P peak bandwidth 13GB/s，message size >4MB

NVLink：inter-GPU
Collective peak bandwidth 60-120 GB/s，message size > 16MB

• Design: statically partition model data on CPU and GPU in advance of training.
• param fp16 (2M) on GPU; OS+grad fp16 (14M) on CPU
• transmit grad fp16(2M) GPU->CPU during FWD+BWD
• transmit param fp16(2M) CPU->GPU after ADAM

• Suboptimal computing and memory efficiency.
• 4xV100 1.5TB DRAM DGX-2H: 30B model (25% of peak comp. performance)
• 4xV100 240GB DRAM YARD: scale to 6B model only (41% of peak comp. perf.)

Motivation: Flaws of the ZeRO-offload in DeepSpeed

Non-model data

param fp16

momentum
variance

param fp32
(Optimizer States, OS)

gradient fp16

GPU
memory

CPU
memory

FWD BWD ADMA

Unsatisfied
GPU memory

Zero-offload

real non-model data changing curve

• Idea: Arrange model data tensors into Chunks and dynamically adjust
their CPU-GPU layouts, similar to virtual memory
• Chunk-based vs Transmitting in Tensors:
• Chunk: a block of memory contains the same number of elements.

e.g. 128 M.
• Large message size ensures high PCI-e/NVLink bandwidth utilization

• Dynamic vs Static Partition:
• Real-time adjustment of model data layout according to the near

future memory situations.
• If GPU/CPU memory is about to overflow, tensors not in use are

evicted to CPU/GPU

Design Overview: Chunk-based dynamic memory mgr.

Stateful
Tensors

ChunkLists
(containing payload)

Communication
Executor

Network
config

CPU+
GPU

Memory
Space PyTorch

Model-data
Tensor

Chunk-based Memory Manager (CMM)

PyTorch

Eviction
Strategy Runtime

Memory Tracer

Device-aware
Op. Placement

Dynamic Memory Manager (DMM)

tracing

directing

directing

directing

• PatrickStar: the porter at Krusty Krab
• PyTorch-Mr. Krabs; CPU/GPU-containers; Tensor-Item; Chunk-Box;

Packing Info：A map
for Tensor (Items) and
Chunk (Box)

Hands: Moving Chunks
(Boxes) around Contains
(CPU/GPU Memory)

Manual: Optimal
work procedure.
Help the porter
saving energy.

Item Info: Records
Item (tensor) states
during training (store
opening)

Software Architecture

• Target: Adjust model-data layout timely, before each Op. execution.
• Runtime Mem. Tracer: Depict non-model data volume changing.
• Eviction Strategy: Evict tensors smartly.
• Device-aware Op Placement: Place Op. on CPU/GPU smartly.

Dive into the DMM: Dynamic Memory Management

Communication
Executor

Eviction
Strategy Runtime

Memory Tracer

Device-aware
Op. Placement

Dynamic Memory Manager (DMM)

directing

directing

directing

• Tracing non-model data changing in warmup iterations:
• model-data and non-model data compete for memory resources.
• Warmup: non-model data (N) = memory usage (R) – allocated

model data (C)
• Non-warmup: available model data (A) = overall mem. (L) – non-

model data (N)

DMM: Runtime Memory Tracer

• Operators in DNN can be classified into two categories
• Compute-intensive：nn.Linear（must run on GPU）
• Memory-intensive：ADAM（CPU/GPU）

• Smartly layout memory-intensive Ops
• GPU Margin Space = GPU mem. size. – (peak non-model data + param

fp16 model data)
• Put OS tensors on GPU as much as possible to avoid updated param

fp16 data moving

DMM: Device-aware Operator Placement

Non-model data

param fp16

momentum
variance

param fp32
(Optimizer States, OS)

GPU
memory

CPU
memory

FWD BWD ADMA

Max
non-model

data

GPU margin
space

• Adjust model-data layout : Prepare enough memory space to
satisfy need of the operator execution.
• If memory is full, how to evict not-in-used model data tensors?
• Evict the longest future reference tensors on this

computing device, since we know exactly when each tensor
is in use.
• Belady‘s OPT algorithm in Cache design

DMM: Eviction Strategy

Dive into the CMM: Chunk-based Memory
Management

Stateful
Tensors

ChunkLists
(containing payload)

Chunk-based Memory Manager (CMM)

• Chunk-Tensor-Mapper：Generated before training
• 4xChunkList: param fp16, param fp32, variance, momentum
• The tensors are arranged in the initialization order
• Avoid tensors of the same Operator reside on 2 different chunks

CMM：Chunk-Tensor-Mapper

A light-weight tool search best chunk size for different models

• State implies the possible location of chunks in CPU+GPU memory.
• A tensor is stateful, belonging to one of 5 states.

• State transition is triggered before every operator execution
• The state of a Chunk is determined by the state of all Tensors it manages

• ∀(FREE): If all tensors are FREE, memory can be reused by other chunks or be released
• ∃(COMPUTE): If One of its tensor is COMPUTE, the Chunk must be placed on the

target device
• ~∃(COMPUTE）⋂ ∃(HOLD-like)： If there is no COMPUTE tensor and there is a tensor

that is HOLD-like, the Chunk can be freely placed in either CPU or GPU memory

CMM : Stateful Tensor

HOLD-like state

• Tensor works as a finite-state machine
• 5 states are necessary, since activation rematerization will

introduce FWD on part of operators during the BWD phase.

CMM : Tensor State Transition

• Chunk reuse eliminates grad fp16 ChunkList memory footprint
• Transformer Models are linear-structured
• Grad fp16 has no life-cycle overlap with Param fp16

• Peak model data footprint 14M < 18M (DeepSpeed)

CMM: Chunk Reuse

• CMM is compatible with ZeRO-DP (SC 20)
• Multiple-processing: each process in charge of a GPU
• Training works as DP, but the param are sharded among processes.
• Need extra gather communication to collect remote shards.
• DeepSpeed： Communicating in granularity of tensors.
• PatrickStar：Communicating in Chunks

CMM: Scaling To Multiple GPUs

Picture Courtesy of Microsoft Blog

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_FWD

Pre Op0 FWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_FWD

Op0 FWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_FWD

Op1 FWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_FWD

Op2 FWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Pre Op5 BWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Op5 BWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 G10 G11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 G10 G11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 G10 G11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Op4 BWD

P0 P1 P2 P3 P4 P5 P6 P7 G8 P9 G10 G11

P0 P1 P2 P3 P4 P5 P6 P7 G8 P9 G10 G11

P0 P1 P2 P3 P4 P5 P6 P7 G8 G9 G10 G11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Op4 BWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 G8 G9 G10 G11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Pre Op3 BWD

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 P1 P2 P3 P4 P5 P6 P7 G8 G9 G10 G11

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Chunk 0 Chunk 1 Chunk 2

Local Chunk Remote Chunk COMPUTE HOLD

Proc #0

Proc #1

Proc #2

Proc #0 Proc #1 Proc #2

DNN
model

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

L10

L11

L12

L13

L14

L15

FREE HOLD_AFTER_BWD

Op3 BWD

• Testbed:
• Tencent YARD cloud: 8x40GB V100 240GB DRAM 12-core CPU
• SuperPod: 8x32GB A100 1TB DRAM 192-core CPU per node(8x)

• Baseline
• PyTorch Distributed-DataParallel (DDP)
• DeepSpeed stage3 official example（DP+MP hybrid parallelism)

• Model Config: 1B~68B Parameters (huggingface gpt)

Evaluation: Methodology

• YARD-1xGPU: PatrickStar vs. DeepSpeed(3x), vs. PyTorch DDP (12x)
• YARD-8xGPU: PatrickStar vs. DeepSpeed 8B to 18B (2.25x).
• SuperPod-8xGPU: PatrickStar vs. DeepSpeed 30B to 68B (2.27x).
• Memory efficiency：18B@YARD 18×14=252GB vs. 291.2 GB

86% utilization of overall memory space

Results: Model Scale

• PatrickStar is more efficient on DeepSpeed not supports
cases (1.08x-1.47x, on average 1.23x)

Results: Throughput on YARD

Peak Perf
47%

• PatrickStar speedup to DeepSpeed more significantly with
more CPU memory (1.07x-2.43x, on average 1.53x)

Results: Throughput on SuperPod

Peak Perf
37%

•👍Device-aware placement：XgBase vs. XgOSC(OS always on
CPU)
•👍Runtime Memory Tracer：XgBase vs. XgSP (static partition)

•👍CMM: Sbob system only DMM

Ablation Analysis

•👏32xA100(4 node) is able to run GPT3 training
•💪Superlinear scalability, 8 PetaFlops for GPT3@8node

Results: Scale to 8 nodes (64 GPU)

• NVIDIA proves that PatrickStar uses fewer nodes to train GPT3
and the efficiency is comparable to that of Megatron-LM, and
the efficiency reaches 40% of peak performance

Test Report from NVIDIA

• https://github.com/Tencent/PatrickStar
• Preprint: PatrickStar: Parallel Training of Pre-trained Models

via a Chunk-based Memory Management
• https://github.com/hpcaitech/ColossalAI
• Already integrated the DMM module

Related Open-Sourced Project

https://github.com/Tencent/PatrickStar
https://github.com/hpcaitech/ColossalAI

Q&A

SuperPod Network Topology

SuperPod Spec

Basic information

Server Model H3C G5500 Gen5

CPU AMD EPYC 7K62 48-Core Processor

GPU Delta A100 40GB

Mem 1T DDR4 2933 MT/s

Disk 4 x 3.2T NVMe SSD

NIC 8 * ConnectX6 200Gb/s HCA

OS Tlinux 4.14.105-1

GPU driver 470.57.02

MOFED 5.4-1.0.3.0

Docker 2020.10.8

NGC PyTorch 21.08(CUDA 11.4.1, cuDNN 8.2.2.26, NCCL
2.10.3)

环境要求 NCCL版本要求：> 2.9x 低版本nccl跑步起来

