
swDNN: A Library for Accelerating Deep Learning
Applications on Sunway TaihuLight Supercomputer

Jiarui Fang∗†, Haohuan Fu∗ †, Wenlai Zhao∗†, Bingwei Chen∗†,
Weijie Zheng∗†, Guangwen Yang∗†

†Tsinghua University
∗National Supercomputing Center in Wuxi

2017. 05. 31@Orlando IPDPS17

Deep Leaning from a Big Picture
Data	Science
(“Big	Data”)

Data	
Analysis

Data	
Analysis

Machine
Learning

SVM
K-Means
Clustering

Deep	learning
Deep	neural	Nets

Convolutional	Neural	Nets

Recommender	Systems	
Collaborative	Filtering	
Regression	Bayesian	

Networks	Decision	Trees	
Random	Forests	
Semantic	Analysis

Data
Management

Queries
Indexing

Distributed
Storage

Amount	of	Data

Pe
rf
or
m
an
ce

New	AI	model
(deep	learning)

Most	learning
Algorithm

Deep Leaning vs Traditional Machine Learning

From	Andrew	Ng From	NVIDIA

What is Deep Leaning good at?

Complexity	of	Task

Si
ze
	o
f	M

od
el

Size	of	Model
Am

ou
nt
	o
f	D
at
a

Complexity	of	Task

Co
m
pu
ta
ti
on
	R
eq
ui
re
d

Deep Learning driven by scale

Big	Model	 More	Data
Better	

Performance = + More	Computing	Power!à

• Large	Models Parameters	and	Data	(Memory	Space)
• More	Float	Point	Operations	(Computing	Power)

8	layers
1.4	Gflop/Image
2GB	GPUmemory

~16%	Error

152	layers
22.6	Gflop/Image
56GB	GPU	memory

~3.5%	Error

2012
AlexNet

2015
ResNet

2ExaFLOP
25M	|	7,000hrs
~16%	Error

20	ExaFLOP
100M	|	12,000	hrs

~5%	Error

2014
Deep	Speech	1

2015
Deep	Speech	2

Images Speech

16x	Computing
28x	Memory

10x	Computing
4x Memory	 for	Parameters

Computing	Capacity	Tflopsà Pflops

Deep Learning driven by scale

“Investments	in	computer	
systems	— and	I	think	the	
bleeding-edge	of	AI,	and	deep	
learning	specifically,	is	shifting	to	
HPC	— can	cut	down	the	time	to	
run	an	experiment	from	a	week	
to	a	day	and	sometimes	even	
faster.”	

Big	data	+	Deep	learning	+	High	performance	computing	=
Intelligence
GTC’14:	Deep	Learning	Meets	Heterogeneous	Computing	

High Performance Deep Learning

http://www.theverge.com/

Big Sur	:	Facebook’s	Supercomputer	for	Deep	learning
40Pflops (single-precision)

High Performance Deep Learning

• Scale up：leveraging	hardware	power	inside	a	single	machine	

• Scale	out：using	multiple	machines/nodes	in	a	large	cluster	to	
increase	the	available	computing	power

Towards High Performance Deep Learning

• Scale up：leveraging	hardware	power	inside	a	single	machine	.

• Scale	out：using	multiple	machines/nodes	in	a	large	cluster	to	
increase	the	available	computing	power

Towards High Performance Deep Learning

Perk	Performance	 ：125	PFLOPS
LINPACK	Performance ：93	PFLOPS
Performance	per	Watt ：6.05	GFLOPS/W
Clock	frequency	of	CPU ：1.45GHz
Peak	Performance	of	a	CPU ：3.06	TFLOPS
Total	capacity ：1024TB

SW26010
Many-core
processor

Computing
Node

Computing
Plugin

Super Node SuperComputer8x

Total	Bandwidth ：4473.16TB
Network	Link	bandwidth ：14GB/S
Network	Bisection	bandwidth ：56TB/S
Storage ：20PB
Total	I/O	bandwidth ：288GB/s
LINPACK	Power ：12.5MW

The Sunway TaihuLight Supercomputer

4x 8x 160x

Execution	
Pipelines	

SIMD	width Clock Data-Cache
Pre CPE

Memory	
Bandwidth

CPE 2 256bit 1.45GHz 64KB	LDM
136	GB/s

MPE 2 256bit 1.45GHz 256KB	L2	+	32KB	L1

Architecture of SW26010

• swDNN provides	highly	tuned	implementations	for	standard	
routines	for	neuron	layers	of Deep	Neural	Networks
• BLAS	(can	accelerate	most	of	layers)
• *Convolutional	Layer (occupy	over	90%	time	in	CNN)

swDNN：A Library for Deep Learning

Convolutional	Layers

Filter	Kernels
(𝑁",𝑁$,𝐾&,𝐾')

Input	data
(𝐵, 𝑁$,𝐶$,𝑅$)

Output	data
(𝐵, 𝑁",𝐶",𝑅")

• swDNN provides	highly	tuned	implementations	for	standard	
routines	for	neuron	layers	of Deep	Neural	Networks
• BLAS	(can	accelerate	most	of	layers)
• *Convolutional	Layer (occupy	80%~90%	time	in	CNN)

• Challenges	for	parallel	convolutional	layer	design	on	SW26010
• The	relatively	low	memory	bandwidth.

• The	DDR3	memory	interface	provides	a	peak	bandwidth	of	144GB/s (36	GB/s	per	CG).	
While	the	NVIDIA	K80	GPU	provides	a	bandwidth	of	480	GB/s.	

• The	algorithm	of	Convolutional	Layer	involves	all-to-all	connections	between	
inputs,	filter	kernels,	and	outputs.	
• SW26010,	the	CPEs	do	not	have	a	shared	buffer	for	such	frequent	data	communications.	
While in	NVIDIA	K80,	L1	cache	can	be	shared	in	SPs	in	the	same	SMX	and	L2	cache	can	be	
shared	by	all	SPs.

swDNN：A Library for Deep Learning

8	by	8	CPE	
mesh

Registers

LDM

Peak	Performance	per	CG
/012 = 742.4829:;<

46.4GB/s	�64

4~32	GB/s

Considering		Execution		Efficiency	(LL)	
/012 = 742.4	829:;< · LL

Considering	LDM−REG	Exchange
/012 = 742.4829:;< · LL ·

2 UVW 1,
46.4 · 64	

Z[\]^_→abc

Peak	Performance	per	CG	
/012 = 742.4	829:;<

Considering		
Execution		Efficiency	(LL)	
/012 = 742.4		829:;< · LL

Considering	Direct	Memory	Access	
/012 = 	742.4		829:;< · LL ·

2 UVW 1,
8

Z[_b_→abc

Direct	Memory	Access REG-LDM-MEM

Considering	MEM − LDM	Exchange
/012 = 42.4829:;< · LL

· 2 UVW 1,
46.4 · 64	

Z[\]^_→abc

· 2 UVW 1,
f[_b_→]^_

Z[_b_→]^_

Main	
Memory

𝑹𝑩𝑾𝑴𝑬𝑴→𝑹𝑬𝑮

=
8𝐵𝑦𝑡𝑒

2𝑓𝑙𝑜𝑝/8×1.45𝐺𝐻𝑧
= 139.2	𝐺𝐵𝑝𝑠

A Performance Model for SW26010
Required	Bandwidth	(RBW)=	

𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐴𝑐𝑐𝑒𝑠𝑠
𝑡𝑖𝑚𝑒 	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐶𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

	𝑤𝑖𝑡ℎ	𝑛𝑜	𝑃𝑒𝑟𝑓𝑜𝑟𝑎𝑚𝑎𝑛𝑐𝑒	𝐿oss	

𝑅𝐵𝑊
𝑀𝐵𝑊

=
	𝐴𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐴𝑐𝑐𝑒𝑠𝑠

𝑀𝐵𝑊
𝑡𝑖𝑚𝑒	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐶𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

	𝑤𝑖𝑡ℎ	𝑛𝑜	𝑃𝑒𝑟𝑓	𝐿oss	

𝑀𝐵𝑊
𝑅𝐵𝑊

=

𝑡𝑖𝑚𝑒	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐶𝑎𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
	𝑤𝑖𝑡ℎ	𝑛𝑜	𝑃𝑒𝑟𝑓	𝐿oss	
𝑡𝑖𝑚𝑒	𝑜𝑓	𝐷𝑎𝑡𝑎	𝐴𝑐𝑐𝑒𝑠𝑠

	𝑫𝒊𝒔𝒄𝒐𝒖𝒏𝒕 =
𝑝𝑒𝑟𝑓	𝑤𝑖𝑡ℎ	𝑙𝑜𝑠𝑠
𝑝𝑒𝑟𝑓	𝑛𝑜	𝑙𝑜𝑠𝑠 =

𝑓 min 1,
𝑀𝐵𝑊
𝑅𝐵𝑊

𝑓 · 	𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	
𝑤𝑖𝑡ℎ	𝑓(1) 	 = 	1	

Measured	Bandwidth	(MBW)	

8GB/s

• LDM	blocking	:	loop	splitting	and	loop	scheduling
• To	decrease	𝑹𝑩𝑾𝑴𝑬𝑴→𝑳𝑫𝑴 ,	we	should	reuse	the	data	fetched	by	DMA	
operations	as	much	as	possible.
• To	increase	𝑴𝑩𝑾𝐌𝐄𝐌→𝑳𝑫𝑴 ,	we	should	increase	leading	dimensions	of	
data	accessed	by	DMA.	

Table	I.	Measured	DMA	Bandwidths	(GBps)	of	1	CG	is	affected	by	the
the	size	of	continuous	memory	access	blocks	of	one	CPE	

LDM-related optimizations

𝑅BWyz{→|}y =
𝑁" + 𝑏��𝑏� 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒

2b��𝑏�𝑁"
𝑝𝑒𝑟𝑓	𝑛𝑜	𝑙𝑜𝑠𝑠

= 𝛼
1

𝑏��𝑏�
+
1
𝑁"

2𝑁$×𝑁"×𝑏𝐶𝑜×𝑏� flop
Amount	of	calculation

𝑁$×𝑏𝐶𝑜×𝑏�
𝑁$×𝑁"

Input	elements

Filter	elements

Inner	Data	Access

LDM-related optimizations

blocking	
dimensions

leading Dim.
of	DMA

Input	data 𝐶", 𝐵, 𝑁$ 𝑏��×𝑏�
Filter	kernels 𝑁$,𝑁" 𝑁$
Output	data 𝐶",𝐵,𝑁" 𝑏��×𝑏�

(𝐶𝑜���&�: 𝐶𝑜���&� + 𝐾' +𝑏𝐶", 𝑅𝑜���&� + 𝑐𝐾𝑟)

𝑅BWyz{→|}y =
𝐵 + 𝑁" 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒

2𝐵𝑁"
𝑝𝑒𝑟𝑓	𝑛𝑜	𝑙𝑜𝑠𝑠

= 𝛼
1
𝑁"

+
1
𝐵

𝑁$×𝐵
𝑁$×𝑁"

Input	elements
Filter	elements

Inner	Data	Access

2𝑁$×𝑁"×𝐵 flop
Amount	of	Calculation

LDM-related optimizations

Blocking	
dimensions

Leading	Dim.	
of DMA

Input	data 𝐵, 𝑁$ 𝐵
Filter	kernels 𝑁$,𝑁" 𝑁$
Output	data 𝐶",𝐵,𝑁" 𝐵

x𝐾'

(:,𝑐𝐾&)

• Coordinate	GEMM	(General	Matrix	Matrix	Multiplication)	operation	on	
64	CPEs
• How	to	distributed	the	data	fetched	from	main	memory	onto	LDM	of	64	CPEs?
• How	to	share	data	between	64	CPEs	when	computing?
• How	to	enable	𝑅𝐵𝑊|}y→���<	46.4GB/s?

• Solution
• Register	Communication
• Register	Blocking	+	Vectorization

Register-Related Optimization

• Data	Layout
• Divide	matrices	structure	in	LDM	along	row	and	column	
into	8	parts	respectively	.i.e.,	each	CPE	maintains	
1/8×1/8	data.

• Data	Sharing	with	Register	Communications*
• enables P2P/broadcast 256-bit data communications at

the register level
• each	CPE	can	communication	with	other	CPEs	in	the	
same	row	and	column
• follows	an	anonymous	producer-consumer	 pattern	with	
FIFO	sending/receiving	buffers	with	a	latency	of	10	or	11	
cycles.

Register-Related Optimization – Register Communication
A	4x4	CPE	mesh	demo

𝑫𝒐 = 𝑫𝒊×𝑾

*	Zhigeng Xu,	at	el.	Benchmarking	SW26010	Many-core	Processor	

Register-Related Optimization – Register Blocking +
Vectorization
Blocked	in	Registers Already	in	LDM vector	data	used	for	1	vmad operation

Block	filters	data	in	column	and	input	data	in	row,	Update	a	submatrix of	output	data

!"#$
%&

%'

%&
%'

(

(

vload+putc=vloadc or getc

input dataoutput datafilters

vmad !")!"#$

!")

vload+extend
+ putr =
loader
or
getr

block	next	filters	data	and	input	data	registers,	Update	the	same	output	data

Register-Related Optimization – Register Blocking +
Vectorization

!"

!#

!"
!#

$

$
input dataoutput datafilters

vmad %&'(

%&)

vload+putc=vloadc or getc

vload+extend
+ putr =
loader
or
getr

Finish	updating	the	a	block	of	output	data,	store	it	into	LDM

Register-Related Optimization – Register Blocking +
Vectorization

!"

!#

!"
!#

$

$
input dataoutput datafilters

vmad %&'(

%&)

vload+putc=vloadc or getc

vload+extend
+ putr =
loader
or
getr

Begin	update	next	block	of	output	data

Register-Related Optimization – Register Blocking +
Vectorization

!"

!#

!#

$

$
input dataoutput datafilters

vmad %&'(

%&)

vload+putc=vloadc or getc
vload+extend

+ putr =
loader
or
getr

!"#$%&

%'

%&
%'

(

(
input dataoutput datafilters

vmad

)*+,-. =)%'

!*0 =)%'
!"1!"#$

!"1

3/4 of	data	
wasted

𝑅𝐵𝑊|}y→��� =
𝑟𝑏� + 4𝑟𝑏�� 𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒

2𝑟𝑏�𝑟𝑏��
𝑃𝑒𝑟𝑓	𝑜	𝑙𝑜𝑠𝑠

𝑅𝐵𝑊|}y→��� <
4 + 4×4 ×8𝐵𝑦𝑡𝑒

2×4×4/(1.45𝐺𝐻𝑧×8𝑓𝑙𝑜𝑝) = 23.2𝐺𝐵/𝑠 < 46.4𝐺𝐵/𝑠

𝑟𝑏�� = 𝑟𝑏� = 4

Register-Related Optimization – Register Blocking +
Vectorization

Principles	:

• Reduce	Read	After	Write	(RAW) Hazard	:	

postpone	 issuing	of	dependent	 instructions

• Increase	Instruction	Level	Parallelism:

pairing	 loads/stores	with	flops	 to	maximize	dual-issue

EE	=	16/26	=	61.5% EE	=	16/17	=	94.1%Computing-Unit-Related
Optimization

Different		input	and	output	channels	Tests
Double-precision	performance	results	of	our	convolution	kernels	with	different	(Ni,No)	ranging	from	(64,64)	to	(384,	384),	compared	with	
the	K40m	GPU	results	with	cuDNNv5.	(B	=	128,	output	 image	=64	× 64,	filter	=	3	× 3)	

Convolution performance is around 1.6 Tflops in double-precision floating-point

Performance Evaluation of Convolutional Layers

Performance Evaluation of Convolutional Layers

Different		filter	kernel	sizes	Tests
Double-precision	performance	results	of	our	convolution	kernels	with	different	(Kr,	Kc)	ranging	from	(3,	3)	to	(21,	21)	and	Ni	ranging	rom	128	
to	384,	,	compared	with	the	K40m	GPU	results	with	cuDNNv5.	 (B	=	128,	output	 image	=64	× 64)	

Convolution performance is around 1.6 Tflops in double-precision floating-point

• Speedup	ranging	from	1.91x	to	9.75x	compared	with	cuDNNv5.1	on	NVIDIA	
Tesla	K40 with	double-precision	floating-point.
• Performance is insensitive	to parameter	configurations	– more	stable	than	
cuDNN.
• swDNN is	about	54%	of	the	peak	performance,	while	cuDNN is	around	40%.	

Performance Evaluation of Convolutional Layers

Revisiting the Performance Model for SW26010

Evaluation of our Performance Model

Plan 𝑲𝒄 𝒃𝑩 𝒃𝑪𝒐 𝑵𝒊 𝑵𝒐 RBW MBW modeled measured

img 3 32 16 128 128 29.0 21.9 368 350

img 3 32 8 128 256 23.2 18.2 397 375

batch 3 - - 256 256 27.1 21.2 422 410

batch 3 - - 128 384 25.7 21.2 407 392

无人驾驶 对弈 语音 视觉

A
pp

Li
b

ha
rd
w
ar
e

Fr
am

ew
or
k

无人驾驶 对弈 语音 视觉

A
pp

Li
b

ha
rd
w
ar
e

Fr
am

ew
or
k

SWCaffe

swDNN: A Library for Accelerating Deep Learning
Applications on Sunway TaihuLight Supercomputer

Jiarui Fang∗†, Haohuan Fu∗ †, Wenlai Zhao∗†, Bingwei Chen∗†,
Weijie Zheng∗†, Guangwen Yang∗†

†Tsinghua University
∗National Supercomputing Center in Wuxi

Thank you for your listening

