
swCaffe: a Parallel Framework for Accelerating
Deep Learning Applications on Sunway TaihuLight

Jiarui Fang*, Liandeng Li*
*Equal Contribution
Tsinghua University

National Supercomputing Center in Wuxi
{lld14, fjr14}@mails.tsinghua.edu.cn

Haohuan Fu
Tsinghua University

National Supercomputing Center in Wuxi
haohuan@mail.tsinghua.edu.cn

Jinlei Jiang
Tsinghua University

jjlei@tsinghua.edu.cn

Wenlai Zhao, Conghui He
Tsinghua University

National Supercomputing Center in Wuxi
cryinlaugh@126.com, heconghui@gmail.com

Xin You
Beihang University

youxin2015@buaa.edu.cn

Guangwen Yang
Tsinghua University,

National Supercomputing Center in Wuxi
ygw@mail.tsinghua.edu.cn

Abstract—This paper reports our efforts on swCaffe, a highly
efficient parallel framework for accelerating deep neural net-
works (DNNs) training on Sunway TaihuLight, the current fastest
supercomputer in the world that adopts a unique many-core
heterogeneous architecture, with 40,960 SW26010 processors
connected through a customized communication network. First,
we point out some insightful principles to fully exploit the
performance of the innovative many-core architecture. Second,
we propose a set of optimization strategies for redesigning a
variety of neural network layers based on Caffe. Third, we put
forward a topology-aware parameter synchronization scheme to
scale the synchronous Stochastic Gradient Descent (SGD) method
to multiple processors efficiently. We evaluate our framework
by training a variety of widely used neural networks with
the ImageNet dataset. On a single node, swCaffe can achieve
23%˜119% overall performance compared with Caffe running
on K40m GPU. As compared with the Caffe on CPU, swCaffe
runs 3.04˜7.84x faster on all the networks. Finally, we present
the scalability of swCaffe for training of ResNet-50 and AlexNet
on the scale of 1024 nodes.

I. INTRODUCTION

Deep Learning [1] has already proven its usability in a
variety of applications [2]. In order to achieve better result
or to deal with more complex problems, the scale of network
gets larger and larger. As large network structures require sub-
stantial computational power, memory throughput and storage
capacity, training neural networks poses a great challenge to
the underlying hardware. Since single processor efficiency has
reached the physical limits of the hardware, scaling DNN
training over parallel supercomputer becomes a good solution
to satisfy the computation and storage requirements.

Sunway TaihuLight [3], a supercomputer that ranks first
in the world currently, is powered by the SW26010 many-
core processors with a total computing capacity of over
100 PFlops. The SW26010 processor is designed with on-
chip heterogeneous techniques and provides a peak double-
precision performance of 3.02 TFlops. Over 40,000 SW26010

processors are connected hierarchically with high-bandwidth
customized hierarchical network.

Our previous work [4] has already explored the possibility
of developing highly efficient convolution subroutines on
SW26010. However, there remains great challenges to scale
the entire DNN training to larger clusters. First, as main-
stream DNN frameworks are usually designed for CPU-GPU
hybrid system, straight-forward migrations or implementations
of these frameworks to the brand new architecture can not
achieve satisfactory performance. Redesigning a variety of
basic DNN layers according to the characteristics of the
SW26010 processors is the only way to unleash the po-
tential performance of the supercomputer. Second, parallel
training suffers from frequent communications and imbalanced
operations among a large number of nodes. A customized
communication strategy is necessary to take advantage of the
network topology of Sunway TaihuLight. Third, the parallel
disk I/O of the input data can also become a bottle-neck in
large-scale DNN training.

To solve the above challenges and facilitate network train-
ing tasks on TaihuLight, we redesign the widely-used Caffe
framework and customize a set of routines to best fit the unique
heterogenous architecture of SW26010, and further scale it to a
large number of nodes. Our main contributions are as follows:

• We point out a set of general principles for designing par-
allel algorithm that fit the different aspects of SW26010
hardware characteristics.

• A Caffe-based framework for SW26010 processor,
namely swCaffe, is developed. It incorporates a set of
optimization strategies and redesigns a variety of DNN
layers to fully squeeze every bit of performance from the
SW26010 processors.

• We put forward a parallel synchronous SGD method to
scale swCaffe on multiple nodes with highly-efficient
parameter synchronization and parallel I/O strategy.

• The swCaffe is open-sourced on [5], which maintaining
the same interfaces as Caffe but can be deployed more

ar
X

iv
:1

90
3.

06
93

4v
1

 [
cs

.D
C

]
 1

6
M

ar
 2

01
9

efficiently on the TaihuLight system.
The rest of the paper is organized as follows. In Section

II, we describe Sunway TaihuLight architecture and DNN
training methods as backgrounds. In Section IV, we describe
the principles for parallel algorithm design on SW26010 and
optimization methods of swCaffe for DNN layers based on
these principles. In Section V, we present our methodology to
scale swCaffe on multiple nodes. In Section VIII, we conclude
with a brief discussion of future work.

II. BACKGROUND

The Sunway TaihuLight supercomputer is composed of
40,960 nodes with a total of 10,649,600 cores. The nodes are
connected through a customized network.

A. SW26010 Many-core Processor

The general architecture of the SW26010 is shown in
Figure 1. The SW26010 processor includes 4 core-groups
(CG) connected via the network on chip (NoC). Each CG
includes one management processing element (MPE), one
computing processing element (CPE) cluster with 8x8 CPEs,
and one memory controller (MC). The processor connects to
other outside devices through a system interface (SI).

Each group has its own memory space (8GB DDR3 memory
for each), which is connected to the MPE and the CPE
cluster through the MC. Four core groups connect to four
128-bit DDR3 memory controllers with a theoretical memory
bandwidth of 136GB/s.

The MPE and CPE are both 64-bit RISC cores, which
are running at 1.45 GHz with 256-bit SIMD instructions
supported. Each MPE has a 32 KB L1 data cache, a 32 KB
L1 instruction cache, and a 256 KB L2 cache while each CPE
has a 16KB instruction cache and a 64 KB local directive
memory (LDM), also known as Scratch Pad Memory (SPM),
which should be explicitly controlled by user.

The 8×8 CPEs are able to communicate with each other
via register buses. CPEs that fall into the same row or same
column can send messages each other through the fast register
communication mechanism. In one cycle, the registers support
up to 256-bit broadcast or P2P communication between two
CPEs.

B. Network Topology of Sunway TaihuLight

The customized network of TaihuLight is divided into 2
levels, namely a fat tree at the top and a supernode network at
the bottom. The central switching network is responsible for
communicating different supernodes, which is designed to use
only a quarter of the potential bandwidth instead of a fully
connected network. Each supernode has 256 nodes connected
by high bandwidth network using the static destination-based
strategy as its route policy. TaihuLight uses FDR 56Gbps
network interface cards (NICs) and provides a 70TB/s bisec-
tion network bandwidth in total. The theoretical bandwidth
between any two nodes is 16GB/s. However, it only achieves
12GB/s with a latency at the level of micro-second when nodes
are communicated with the Message Passing Interface (MPI).

M

P

E

CG2

Main Memory

CG3

CPE

Cluster

CPE

Cluster

CPE

Cluster

Network On Chip

（NoC）

CPE

CPE Mesh

CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE CPE CPE CPE

...

...

...

...
8 ⅹ 8

LDM

System

Interface(SI)

CPE

Cluster

PPU

iMC

M

P

E

Main Memory

PPU

iMC

M

P

E

Main Memory

PPU

iMC

M

P

E

Main Memory

PPU

iMC

Fig. 1: The architecture of SW26010 many-core processor

C. DNN Training Process and Frameworks

Deep learning is used to solve the following optimization
problem.

argmin
θ

f(θ) =
1

N

N∑
n=1

fn(θ) (1)

where θ is the model parameters (or weights) we are looking
for; N is the number of samples; f(θ) is typically in a form
of a DNN; fn(θ) is the loss function of the nth sample.
The stochastic gradient descent (SGD) method is the de facto
method for DNN training.

A typical implementation of SGD is iterating the forward-
backward propagations. The forward propagation step uses
a mini-batch of training data as input to calculate the in-
termediate activations after each layers, while the backward
propagation step uses the intermediate activations to perform
gradient computation. The gradient to model parameters are
then applied to the model after each backward propagation
step.

Caffe [6] is an open-sourced software framework used for
DNN training. It is written in C++ and widely adopted in
research experiments and industry deployments. Caffe imple-
ments DNN training with three major components, namely
layers, net and solvers, corresponding to three optimization
levels. Layers implement the algorithm of different neural
network layers, related with the algorithm level optimization
targeting different underlying hardware and platforms. The
net defines the network structure of a DNN model and
implements the forward and backward propagations, so it
allows optimizations for the process of one training iteration,
such as process parallelization and memory optimizations.
Solvers control the network training process and implement
the parameter tuning algorithms, such as Stochastic Gradient
Descent (SGD). Therefore, optimizations for network training
algorithms and distributed training process should be involved
in the solvers. The original Caffe framework is designed for
standalone training with one HPC server, and only supports
GPU accelerators. In order to efficiently map the framework

TABLE I: Comparison of SW, Intel Knight Landing (KNL)
and NVIDIA K40m processors

Specifications SW26010 Nvidia K40m Intel KNL
Release Year 2014 2013 2016

Bandwidth(GB/s) 128 288 475
float perf. (TFlops) 3.02 4.29 6.92

double perf. (TFlops) 3.02 1.43 3.46

onto Sunway TaihuLight supercomputer, we need to refactor or
redesign the implementation of the above three components,
so as to fit the unique architecture of the processors and to
support distributed training over multiple nodes.

III. DESIGN AND IMPLEMENTATION OF DNN
FRAMEWORK ON SW26010

We first present principles of parallel algorithm design on
SW26010 and then introduce our strategies to redesign the
computing kernels of different DNN layers on SW26010 under
the guidelines of these principles.

A. Principles of Parallel Algorithm Design on SW26010

The SW26010 is a brand new processor, which is totally
different from other many-core processors used for DNN
training, such as GPU and Intel Xeon Phi co-processors. Table
I shows the comparison of different aspects among SW26010,
GPU and KNL. The methodologies for accelerating neural
layers in main-streaming architectures (GPU, KNL) are not
suitable for the SW26010 architecture. It often results in
extremely poor performance if we migrate the framework that
runs on GPU or KNL to SW26010 in a straight forward way.

A clear understanding of the advantages and disadvantages
of the hardware architecture is of great importance to fully
squeeze every bit of potential performance from Sunway Tai-
huLight. As a result, we propose the a set of principles as the
guidelines when desiging the high performance applications.

Principle 1: Fully utilize 8 × 8 CPE mesh for
computation-intensive tasks. The CPE cluster provides the
computing capacity of 742.4 GFlops while the MPE only 11.6
GFlops in each CG theoretically. So the most important step
to improve the performance is to offload the computationally
intensive kernels to the 8 × 8 CPE mesh. Different levels
of parallelism can also be carefully exploited within CPE
clusters:

• The parallelism between 64 CPEs is exploited by orches-
trating data-independent tasks on each CPE simultane-
ously.

• For each CPE, data-level parallelism can be exploited by
using 256-bit vector registers for SIMD operations.

• In addition, we can exploit instruction-level parallelism
from two instruction pipelines, the floating-point pipeline
and the memory access pipeline. Both pipeline issues
instructions in order on their own pipeline, while inde-
pendent instructions on different pipelines could be issued
out of order.

Principle 2: Always use LDM as intermediary cache for
data movements between DDR3 memory. In each CG, the

memory controller is responsible for connecting both the MPE
and the CPE cluster to the DDR3 memory, which means the
MPE and the CPEs share the theoretical memory bandwidth of
32 GB/s. According to the benchmark in Figure 2, the DMA
bandwidth saturates around 28 GB/s for both read and write.
However, the memory bandwidth between Memory-to-MPE
and Memory-to-LDM is extremely different. The bandwidth
of copying data from one DDR3 memory space to another
through Memory-to-MPE is only 9.9 GB/s. As a result, it is
always preferred to use LDM as the intermediary cache, other
than accessing main memory from CPEs directly.

Principle 3: Increase available memory bandwidth by
transferring large data blocks. The limited aggregated mem-
ory bandwidth and the high-computing power lead to an ex-
tremely high flop-per-byte ratio, which is 742.4Gflops

28GBps = 26.5,
compared with ratios of 14.90 and 14.56 for K40m and
KNL, respectively. To achieve satisfactory DMA bandwidth,
we should keep in following points in mind during algorithm
design. First, data transfer should be conducted with 64 CPEs
together. Second, memory access from the CPE cluster in
small granularity should be avoided as much as possible. Size
of data to be transferred for each CPE should be larger than 2
KB so that data transfer time can hide the hundreds of cycles
LDM transfer latency. Data block size for strided access should
be at least 256 bytes so as to achieve satisfactory bandwidth
performance.

0

5

10

15

20

25

30

B
an

dw
id

th
 (

G
B

/s
)

DMA_get

1CPE
8CPE
16CPE
32CPE
64CPE

DMA_get

1CPE
8CPE
16CPE
32CPE
64CPE

128 256 512 1K 2K 4K 8K 16K 24K 32K 48K

continous DMA access, Data Size (Byte)

0

5

10

15

20

25

30

B
an

dw
id

th
 (

G
B

/s
)

DMA_put

1CPE
8CPE
16CPE
32CPE
64CPE

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

strided DMA access, Block Size (Byte)

DMA_put

1CPE
8CPE
16CPE
32CPE
64CPE

Fig. 2: Bandwidth of DMA get and put operations for con-
tinuous and strided data access patterns. The left two figures
show how bandwidth varies with the data sizes of continuous
DMA access for each CPE. The right two figures show how
bandwidth varies with the data block sizes of strided DMA
access for each CPE, when the total accessed data size of
each CPE is 32 KB.

Principle 4: Reduce memory access by register-level
communication among CPEs. Besides increasing avail-
able bandwidth, we can also reduce the amount of data
transfer between LDM and memory to improve perfor-
mance. The register-level communication (RLC), which en-

ables P2P/broadcast 256-bit data communications at the reg-
ister level among CPEs, is a unique hardware characteristic
of SW26010. Direct RLCs are allowed only between CPEs
within the same row or the same column, following an anony-
mous producer-consumer pattern with FIFO sending/receiving
buffers (i.e., the send instruction is asynchronous, and the
sender/receiver gets stalled if the sending/receiving buffer is
full/empty). If RLC transfers are fully pipelined, the overall
P2P and broadcast bandwidth can reach 2549 GB/s and 4461
GB/s respectively [7]. In this way, we can reuse the data in
other LDMs on the same row/column in the CPE cluster to
reduce bandwidth requirements between the main memory and
LDMs.

IV. PARALLEL DESIGN OF DNN LAYERS

A Deep Neural Network consists of different layers. We
present our optimization methods for the most frequently used
layers in DNN applications, according to the principles pointed
out in the previous section.

A. Matrix-Multiplication Layer

The inner-product layers and other more complicated layers,
such as Long Short Time Memory (LSTM) layers, are mainly
involving General Matrix to Matrix Multiplication (GEMM)
operations. If data locality is fully exploited and near optimal
memory bandwidth is achieved, GEMM operations can be
implemented with a high flop-to-byte ratio. To implement it
on CPE cluster, we use the register communication proposed
in [4] [8] to increase data locality in LDM. Assume we intend
to perform GEMM operation C+ = A×B, where matrix A,
B and C are of sizes m× k, k × n, m× n, respectively and
can all fit into the 64 KB LDM. Matrices are evenly divided
to dimension of size m/8, n/8 and k/8. A CPE is responsible
for computing m/8× n/8 block of C requiring an m/8× k
tile of A and a k× n/8 tile of B. Note that, in this case, 7/8
of both tiles of B and C required by this CPE are resident on
remote LDM of other CPEs. According to Principle 4, we can
take advantage of the row and column register communication
scheme to fetch remote data, as CPEs in the same row of the
cluster share the tile of A, and CPEs in the same row of the
cluster share the tile of B.

The GEMM operation can be finished in 8 steps as
C(i, j)+ =

∑7
t=0A(i, t)×B(i, t). (i, j) indicates the coordi-

nate of the CPE, where data is resident, in the 8 × 8 cluster.
For each time step t(0 ≤ t ≤ 7), CPE(i, t) loads data of
A(i, t) from LDM and broadcasts the data to other CPEs in the
same column by column register communication. Similarly,
CPE(t, j) loads data of B(t, j) from LDM and broadcasts the
data to CPEs in the same row. Thus, CPE(i, j) can receive
both data of CPE(i, t) and CPE(t, j) and the computation
of C(i, j)+ = A(i, t) × B(t, j) can be done in each time
step. Figure 3 illustrates the register communication operations
when t is 2. This is optimal design with highest flop-to-byte
ratio, as we only require to fetch matrices from memory to
LDM once.

C A B

(i,t)

(t,j)

(i,j)

t=2

t=2

Fig. 3: Illustration of GEMM with register communication on
CPE cluster.

Blocking techniques are applied to matrices which are too
large to fit into the LDM. As the memory-LDM bandwidth is
critical for the GEMM performance, the continuous data sizes
of matrix blocks each CPE accesses should be large enough
according to Principle 3. As a result the dimension size of
matrices should be large enough for good memory bandwidth.

SW26010 provides no inherent support for single-precision
floating point operations, which is default precision option
used in DNN. As there is no instruction to support RLC for
single precision data in the instruction set of SW26010, we
always perform RLC operations with double-precision data
and we conduct inline transformation for elements between
double-precision to single-precision with SIMD instructions.

B. Convolutional Layer

The convolutional layers are the most compute-intensive
parts when training Convolutional Neural Networks (CNNs).
Both time-domain methods with GEMM operations [9] and
frequency-domain methods with FTT operations [10] are
proposed to optimize convolutional layers on GPU. Because
GEMM operations can be perfectly optimized on CPE cluster
with the register-level communication as mentioned previ-
ously, we adopt time-domain transformation methods. To
support different convolutional layer parameter configurations
in real CNN applications, we propose a mixed strategy com-
bining the explicit GEMM plan used in original Caffe and the
implicit GEMM plan proposed in [4].

1) Explicit GEMM transformation: To map convolution
operations to GEMM and reuse the GEMM routine mentioned
in Sec.IV-A, we adopt an explicit GEMM transformation
proposed for original Caffe. In this case, input tensors are
first transferred into matrices by im2col (image-to-column)
operations before leveraging GEMM operations during for-
ward propagation, while col2im (column-to-image) opera-
tions are performed after GEMM operations during backward
propagation. Assuming a convolutional layer has filter of
size (No, Ni,K,K), im2col operation transfers a 3D multi-
channel image tensor of size (Ci, Ri, Ni) to a 2D matrix of
size (Co × Ro,K × K × Ni). Ci/o and Ri/o are column
and row of output image, where Co = (Ci − K)/S + 1,
Ro = (Ri − K)/S + 1, where S is the convolution stride.
Ni is input channel number. No is filter channel number. K is
filter size. The dimension of batch-size B is also introduced for
blocking, which brings more optimization space for GEMM
blocking.

1Ri

Ci

DMA Get

LDM Buffer
DMA Put

Co*Ro

2 3 4 5 6

Co
K*K

im2col Co*Ro

Co

K*K

...

K

K

... ...

...

DMA Get

LDM Get Buffer

LDM Put Buffer

DMA Put
Ri

Ci

...

col2im

DMA_get once

DMA_put once
1 2 3 4 5 60 0 0 1 2 3 4 5

1 2 3 4 5 6
2 3 4 5 6 0

1 2 3 4 5 6

1 2 3 4 5 6

...
1 2 3 4 5 6

1 2 3 4 5 6

...
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 0

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 0

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 0

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 0

Fig. 4: Optimization for memory access for Im2col and col2im operations on one CPE.

As the filter tensor can be viewed as a matrix of size
(No,K × K × Ni), GEMM operation is performed on two
matrices with common dimension of size K×K×Ni. Im2col
and col2im consist of irregular memory access pattern. The
convolutional layers in backward propagation can transfer
matrix back to tensor with col2im, which has a reverse
memory movement. As indicated by Principle 4, irregular
memory access of im2col and col2im should be implemented
with DMA on CPE cluster. Figure 4 shows our im2col and
col2im plan on one CPE. During im2col process, each CPE
reads one row of a input image into LDM buffer with DMA
get operation. After adding with pad, each CPE writes K×K
line of data into memory. Block sizes are critical for memory
bandwidth in GEMM operation.

2) implicit GEMM transformation: The time overheads of
im2col and col2im are not negligible for some layers. An
implicit GEMM transformation proposed in our previous work
[4] is integrated to implement convolutional layers for swCaffe
by blocking on dimensions of image width and input and
output channels to increase data reuse in LDM. However, when
the input and output filter channel numbers are smaller than
64, performance of implicit method would largely degrade,
because the amount of data in LDM with small channels
is not large enough to support 256-bit SIMD and register
communication operations.

Real applications apply convolutional layers with input
images after zero padding. Considering padding operation
has already been implemented combining with im2col/col2im
operations in explicit scheme, we also propose a padding
optimization in implicit GEMM transformation convolution
layers by use a coordinate mapping techniques to avoid
explicitly padding operations. Details of padding and more
other optimization techniques for convolutional layers can be
found in our technique report released with source code [5].

C. Tensor Transformation Layer

The data of explicit GEMM transformation and implicit
GEMM transformation are arranged differently. In the explicit
GEMM transformation plan, input and output tensors are of
shape (B,N,R,C) and filters are of shape (No, Ni,K,K),
which is also the default data layout for other layers. In
the implicit GEMM transformation plan, input and output
tensors are of shape (R,C,N,B) and filters are of shape
(K,K,No, Ni). Note that the convolutional layers that can be
accelerated with implicit transformation are gathered together.
The filters are local variables of this layers and its layout
do not effect other layers. In swCaffe, we add a tensor

transformation layer, which has an 4D tensor input and an
4D tensor output with dimensions transposition between two
different data layouts.

The tensor transformation in trans layer is mainly irregular
memory movement and should also be accelerated on CPE
cluster. Stride DMA access is adopted to access a block
of tensor into LDM. SIMD shuffle instructions are used to
transform data after load data from LDM to registers.

D. Pooling Layer

The pooling layer partitions the input image into a set of
non-overlapping tiles and, for each such sub-region, outputs
the maximum or average values of elements inside. Since pool-
ing layers are featured with massive memory copy operations,
they should be implemented with DMA operations on CPE
cluster. We design different movement strategies according to
the sizes of input images. Assuming the tile size is K ×K.
According to Principle 3, we should increase the continuous
data size as much as possible for data blocks. Most of times,
each CPE is in charge of pooling operation for multiple K
rows of input image. When K rows of image can not be
fitted in LDM, we load number of columns into LDM as
large as possible. In this case, the data needed by LDM is
not continuously stored in memory and strided DMA is used
to access it.

V. SCALING DNN FRAMEWORK ON THE TAIHULIGHT

In this section, we describe our design to scale swCaffe on
multiple processors.

A. Optimization for Communication of Model Parameters

In our work, we adopt a data parallel scheme with syn-
chronous Stochastic Gradient Descend (SSGD) algorithm to
scale swCaffe, which is widely adopted in HPC clusters and
supercomputer systems [11] [12] considering the high quality
of network and balanced performance per node. There are
mainly two methods to implement model parameter syn-
chronization in SSGD. One method is using the parameter
servers [13] as the intermediary which stores the param-
eters among several servers. The parameter server scheme
is unable to sufficiently exploit the bandwidth potential on
fully-connected network infrastructure of Sunway Taihlight,
since the processor has only one network port, thus, receiving
gradients simultaneously from a large number of workers
could potentially become a bottleneck in the parameter server
design and bandwidth between workers are not fully used.
The other method is to perform all-reduce operations on the

gradients among all nodes and to update the parameters on
each node independently [12]. We adopt the latter approach
to take advantage of the MPI routines optimizing for the
supercomputer system, as the former approach is designed for
synchronization based on low-bandwidth network infrastruc-
tures, like Ethernet. Our parallel synchronous SGD algorithm
is described in Algorithm 1.

Algorithm 1 Parallel SSGD algorithm on processor k

Input: dataset χ, mini batch size b per CPU, the number of
node N , initial learnable parameters w = w[0], ..., w[M]

1: launch 4 threads on 4 CGs
2: for t = 0, 1, ...max iter do
3: for each threads i do
4: sample 1

4 mini-batch (b4 elements) as xi from χ
5: calculate ∇f(xi;wt) with forward and backward

propagation
6: end for
7: threads synchronization()
8: Gkt = 1

4

∑4
i=1∇f(xi;wt)

9: All-reduce Gkt : Gt ← 1
N

∑N
k=1G

k
t

10: wt+1 ← SGD(wt, Gt)
11: end for
12: finalize 4 threads

As shown in Fig.5, we use multiple-threading technique
among 4 CGs inside one processor to calculate the averages
of gradients. At the beginning of each iteration, we call
pthread create() to start 4 threads on 4 CGs. Each process
is able to launch light-weight CPE threads to load work tasks
onto CPE cluster, in order to perform forward-backward prop-
agations of 1/4 of data in that mini-batch. Afterwards, each
CG achieves its local parameter gradients and CG 0 sums them
together to achieve the average gradients of this mini-batch. To
synchronize the sub-threads, we implement a synchronization
function by ourself, which is based on a handshake (initiation-
confirmation) strategy through the semaphore stored in the
shared memory.

Start Process

Compute Compute Compute ComputeIteration 1

CG0 CG1 CG2 CG3

Iteration N
Compute Compute Compute Compute

...

End Process

Compute Compute Compute

Compute

Layer 1

Layer M

...

Simple_Sync()

Simple_Sync()

Simple_Sync()

Compute Compute Compute Compute

Simple_Sync()

...

Control

Flow

Forward

Flow

Backward

Flow

athread_spawn

athread_join

pthread_create

pthread_join

pthread_join

pthread_create

Compute

Fig. 5: Scaling DNN training with multi-threading technique
on 4CGs inside one processor.

To synchronize the gradients across nodes, we imple-
ment a customized all-reduce communication. The default
MPI_Allreduce routine provided by compiler, which is

modified from Open MPI1, can not be directly applied for
swCaffe for mainly three reasons. First, the Sunway network
is characterized by high latency, thus MPI_Allreduce
routines designed for low latency network hardware are no
longer suitable in this situation. As shown in Fig. 6, we
compare the Sunway network with an Infiniband FDR net-
work. While achieving similar high-bandwidth as Infiniband,
the Sunway network has higher latency when message size
is larger than 2KB. Second, the communication pattern in
MPI_Allreduce is not aware of the topology of hierar-
chical network as mentioned in Sec. II-B. If every node in
one supernode performs point-to-point communication with
a different node in another supernode, it will result in over-
subscribed interconnect across supernodes. As shown in Fig.
6, the over-subscribed bandwidth between two supernodes is
around 1

4 of full bandwidth. Third, the sum operation after
data gathering in MPI_Allreduce is performed on MPEs,
thus it is not efficient in the case of large parameter amount.

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

P2P Bandwidth, Data Size (Byte)

0

2

4

6

8

10

B
an

dw
id

th
 (

G
B

/s
)

SW uni-directional
SW bi-directional
SW uni-dir over-subscribed
SW bi-dir over-subscribed
Infiniband uni-direction
Infiniband bidirection

0 2 8 32 128 512 2K 8K 32K 128K 512K 2M

P2P Latency, Data Size (Byte)

0

0.5

1

1.5

2

2.5

3

3.5

4

L
at

en
cy

 (
m

s)

Infiniband
SW

Fig. 6: Comparison of MPI P2P communication bandwidth
and latency between the Sunway network and an Infiniband
FDR network.

We improve the all-reduce operation considering its high
latency and topological property. Before the introduction of
our customized algorithms, we use the cost model proposed
in [14] to evaluate our all-reduce in terms of latency and band-
width use. We assume that the time taken to send a message
between any two nodes can be modeled as α + βn, where
α is the latency (or startup time) per message, independent
of message size. β is the transfer time per byte, and n is
the number of bytes transferred. More specifically, β1 is the
transfer time inside one supernode and β2(≈ 1

4β1) is time
across supernodes when bandwidth is over-subscribed. In the
case of reduction operations, we define γ to be the computation
cost per byte for performing the reduction operation locally on
any node. We also define p to be the total number nodes in
all-reduce operation and q to be the number of nodes in one
supernode.

Considering the high latency characteristics of the Sunway
network, the popular ring-based algorithms [15], having a
pα latency term, are not our best candidates. We choose a
binomial-tree-based algorithm used in MPICH [14], which has
a 2 log pα latency term, as our baseline to improve. An all-
reduce operation is implemented with an allgather phase after

1https://www.open-mpi.org/

a reduce-scatter phase. Instead of storing all results at the
root node, reduce-scatter phase adopts the Recursive Halving
algorithm to scatter reduction results among all nodes. In the
first step, each node exchanges n/2 data with a node that is
a distance p/2 away. Each node sends the data needed by all
nodes in the other half, receives the data needed by all nodes
in its own half, and performs the reduction operation on the
received data. In the second step, each node exchanges n/4
data with a node that is a distance p/4 away. This procedure
continues recursively, halving the data communicated at each
step, for a total of log p steps. Recursive Doubling algorithm,
analogous to the Recursive Halving algorithm, is adopted to
collect partial results from other nodes for each node in the
allgather phase. In the first step, nodes that are a distance 1
apart exchange their n/p data. In the second step, nodes that
are a distance 2 apart exchange their own data as well as the
data they received in the previous step, which has a size of
2n/p in total. In the third step, nodes that are a distance 4
apart exchange their own data as well the data they received
in the previous two steps, which has a size of 4n/p in total.
Nodes exchange message size up to (2log p−1n)/p with the
nodes that are a distance p/2 apart in the last step. A simple
example of such all-reduce implementation is illustrated on
the left side of Fig. 7.

In the original implementation, nodes within the same
supernode are assigned adjacent logical node numbers. In
the first several steps of Recursive Halving and last several
steps of Recursive Doubling, each node has to communicate
with a node far away in another supernode, resulting in over-
subscription between supernodes and achieves merely 1/4 of
full bi-direction bandwidth. The costs of original all-reduce
are illustrated in Equ. 2, Equ. 3, and Equ. 4. The last two
equations are obtained by summing the costs for each time
step, which can be viewed as a geometric progression. If p is
much larger than q, term (p− q)β2 np will account for most of
the communication time.

tallreduce = treduce−scatter + tallgather (2)

treduce−scatter = log pα+(q−1)β1
n

p
+(p−q)β2

n

p
+
p− 1

p
nγ

(3)
tallgather = log pα+ (q − 1)β1

n

p
+ (p− q)β2

n

p
(4)

We notice that the communication traffic in different steps
is not balanced. Recursive Halving gradually reduces traffic,
while Recursive Double gradually increases traffic. Consid-
ering the topology of the Sunway network, a better all-
reduce implementation should place heavy communication
traffic inside one supernode and light one across supernodes.
We redesign the relationship between physical distance and
logical distance used in all-reduce algorithm, by incrementally
assigning logical numbers to nodes of different supernodes
in a round robin way. For example, assuming we have 4
supernodes, Nodes numbered 0,4,8,... belong to supernode 0,
nodes numbered 1,5,9,... belong to supernode 1, and so on. As

shown in Fig. 7, the new all-reduce conducts cross-supernode
communication in the last log p

q steps of reduce-scatter phase
and the first log p

q steps of allgather phase. For these steps,
we only need to exchange relative small amount of message.
The new costs are shown in Equ. 5 and Equ. 6. As we can
see, new implemenation largely reduces the coefficient of β2
from p − q to p

q − 1, thus reducing the overhead caused by
over-subscribed communication.

tnew−reduce−scatter = log pα+(p−p
q
)β1

n

p
+(
p

q
−1)β2

n

p
+
p− 1

p
nγ

(5)
tnew−allgather = log pα+ (p− p

q
)β1

n

p
+ (

p

q
− 1)β2

n

p
(6)

In addition, sum operations after data gathering are imple-
mented on four CPE clusters of the processor. The parameters
of different layers can vary greatly in size. In VGG-16, the first
fully-connected layer is 102 MB, while the first convolutional
layer is only 1.7 KB. Sum operation for layer gradients of
small parameter size can be inefficient, because we can not
fully utilize the memory bandwidth to access data in small
granularity. We pack the gradients of all layers together to per-
formance all-reduce after backward propagation. Such scheme
can fully utilize both network bandwidth for communication
and memory bandwidth for sum operation.

B. Parallel I/O optimization
Computing nodes in Sunway TaihuLight adopt a shared

file system. Each worker of the parallel DNN training task
uses an I/O thread to prefetch one mini-batch data via random
sampling prior to each iteration. The file system on Sunway
TaihuLight adopts a single-split mode for data distribution by
default, which indicates that one file will only be distributed
on one disk array. In this case, if we read the file concurrently,
as the number of processes increases, the aggregate read
bandwidth of multiple concurrent processes can quickly reach
the upper limit of a single disk array. As a result, each process
will get a bandwidth drop and the entire reading time becomes
longer.

We improve the aggregated bandwidth of disk arrays by
increasing the number of stripe to 32 and modifying the
splitting size to 256 MB. Data is distributed on 32 disk array
under the round robin strategy with block size as 256 MB.
Assume that one process is required to read a mini-batch data
size of 256 for ImageNet images. The data size for this mini-
batch is around 192 MB. Since each process always accesses
consecutive 192 MB of data, a single process can access at
most two disk arrays. Accordingly, the number of processes
required per disk array is also reduced to at most N/32 × 2,
where N is the number of processes.

VI. RESULTS

We implement swCaffe with customized Sunway REACH
(Open64 based) C compiler and SWMPI 2.2 (Mvapich 2.2
based) C++/MPI compileron TaihuLight. We compare its per-
formance with the original Caffe built with g++-4.8.0, CUDA-
8.0 Tooltik and cuDNN-v5.1, and deployed on a hybrid system

0 1 2 3 4 5 6 7
4
8 𝑛𝛽%

2
8 𝑛𝛽'

1
8 𝑛𝛽'

1
8 𝑛𝛽'

2
8 𝑛𝛽'

4
8 𝑛𝛽%

Reduce-Scatter
(Recursive	halving)

Allgather
(Recursive	doubling)

0 4 1 5 2 6 3 7
4
8 𝑛𝛽'

2
8 𝑛𝛽'

1
8 𝑛𝛽%

1
8 𝑛𝛽%

2
8 𝑛𝛽'

4
8 𝑛𝛽'

6𝛼 +
7
8𝛾 +

3
4𝑛𝛽' + 𝑛𝛽% 6𝛼 +

7
8𝛾 +

3
2𝑛𝛽' +

1
4𝑛𝛽%

Original	All-Reduce	Cost	: Improved	All-Reduce	Cost	:

Fig. 7: A simple example with 8 nodes distributed in 2 supernodes to illustrate improvement of our all-reduce algorithm. Node
0-3 are in one supernode and node 4-7 are in the other one. Communication costs are labeled on right sides and dashed red
lines indicate over-subscribed cross supernode communication. Our method can largely reduce the traffic across supernodes.

with an intel 12-core E52680 V3 CPU 2 equipped with a
NVIDIA K40m GPU card. We conduct our experiments based
on the public 1000-way ImageNet dataset 3.

A. Results for optimizations on different layers

We analyze the performance of convolutional layers with
both explicit and implicit GEMM transformation strategies
proposed in Sec. IV-B. Table II presents the measured time and
throughput for each convolutional layer of the VGG-16 [16]
network with batch-size 128. VGG-16 has 12 convolutional
layers and covers most commonly used parameter configu-
rations. In terms of the forwardprop in conv1 1 and back-
wardprop in conv1 1,conv1 2 and conv2 1, implicit strategy
is unable to handle small channel sizes and explicit strategy is
the only solution. For most parameter configurations, implicit
strategy outperforms explicit strategy. However, explicit strat-
egy is slightly better for layers of large image sizes and large
channel numbers, where GEMM operations can be performed
on large block sizes on matrices generated by im2col. During
iterative DNN training process, for layers can be implemented
with two methods, swCaffe can run first two iterations to
determine the best strategy used for remaining iterations.

Figure 8 and Figure 9 present the processing time for
each DNN layer on SW26010 and GPU K40m for forward
propagation and backward propagation on AlexNet [17] and
VGG-16, respectively. We adopt some refinements to AlexNet
without affecting the accuracy by changing the local response
normalization (LRN) to batch normalization (BN) in AlexNet.
The performance differences between the two architectures
mainly come from the following aspects i) Although DNN
training has long been considered as a compute-intensive
task on GPU, we notice that most of DNN training time is
spent under bandwidth-bounded situation on SW26010. As
memory bandwidth of GPU device memory can reach 288
GB/s, bandwidth-bounded layers, such as pooling layers, can

2E52680 V3’s memory bandwidth is 68 GB/s and peak performance is 1.28
TFlops

3http://www.image-net.org/

co
nv

1
co

nv
1/

bn re
lu

1
po

ol
1

co
nv

2
co

nv
2/

bn re
lu

2
po

ol
2

co
nv

3
co

nv
3/

bn re
lu

3
co

nv
4

co
nv

4/
bn re
lu

4
co

nv
5

co
nv

5/
bn re
lu

5
po

ol
5 fc
6

re
lu

6
dr

op
6 fc
7

re
lu

7
dr

op
7 fc
8

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

ec
on

ds
)

Comparison of GPU and SW26010
in the forward propagation of Alexnet

GPU
SW26010

co
nv

1
co

nv
1/

bn re
lu

1
po

ol
1

co
nv

2
co

nv
2/

bn re
lu

2
po

ol
2

co
nv

3
co

nv
3/

bn re
lu

3
co

nv
4

co
nv

4/
bn re
lu

4
co

nv
5

co
nv

5/
bn re
lu

5
po

ol
5 fc
6

re
lu

6
dr

op
6 fc
7

re
lu

7
dr

op
7 fc
8

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

ec
on

ds
)

Comparison of GPU and SW26010
in the backward propagation of Alexnet

GPU
SW26010

Fig. 8: Forward and Backward Time of Alexnet on GPU K40m
and SW26010.

be processed in device memory very fast. However, these
layers still have a significant amount of time on SW26010.
ii) Although we achieve comparative performance for most
of compute-insensitive layers, for the first two convolutional
layers in both networks, SW26010 has low efficiency com-
pared with GPU. Given that these layers have large image
sizes, im2col and col2im operations account for most of time
in first two layers. In addition, the input/output channel sizes
are 3/64 and 64/64 for first two convolutional layers, which is
not enough for compute-bounded blocked GEMM operations.
The flop-to-byte ratio of GEMM operation with A(size of
m,n)+=B(size of m, k) × C(size of k, n) is 2mnk

4nm+4nk+4mk .
The best ratio is m

6 , if m = n = k. The architectural flop-
to-byte ratio calculated with the best measured bandwidth is
ratio = 742.4

28 = 26.5. As a result, to make GEMM be
compute-bounded, we have to make m > 160. However,
small channel size limits the m dimension sizes in transformed
matrices.

TABLE II: Combination of explicit and Implicit GEMM transformation on one CG for Convolutional Layer in VGG-16 with
batch-size = 128

conv Ni No Ci/Ri forward time(s) weight diff backward(s) in diff backward(s)
implicit explicit Gflops implicit explicit Gflops implicit explicit Gflops

1 1 3 64 224 − 4.19 5.29 − 1.10 20.18 NA NA NA
1 2 64 64 224 4.30 7.79 110.83 − 5.22 90.49 − 14.97 31.63
2 1 64 128 112 1.63 2.45 146.68 − 1.33 176.70 − 3.61 65.65
2 2 128 128 112 2.34 3.14 202.52 2.26 2.25 209.26 2.39 6.11 198.41
3 1 128 256 56 1.06 0.73 323.10 0.92 0.68 351.07 0.95 1.69 248.92
3 2 256 256 56 1.79 1.14 414.62 1.56 1.29 369.23 1.82 3.05 260.47
3 3 256 256 56 1.79 1.14 415.97 1.56 1.27 376.02 1.82 3.03 260.46
4 1 256 512 28 0.84 0.69 344.42 0.70 0.71 336.32 0.85 0.95 277.64
4 2 512 512 28 1.68 1.33 347.36 1.27 1.33 372.75 1.75 1.89 270.54
4 3 512 512 28 1.68 1.33 348.50 1.27 1.67 372.75 1.75 1.87 270.52
5 1 512 512 14 0.40 0.62 293.58 0.31 0.65 376.94 0.43 0.80 274.26
5 2 512 512 14 0.40 0.63 293.58 0.31 0.78 376.94 0.43 0.84 274.26
5 3 512 512 14 0.40 0.63 293.59 0.31 0.65 377.03 0.43 0.84 274.27

co
nv

1_
1

re
lu

1_
1

co
nv

1_
2

re
lu

1_
2

po
ol

1
co

nv
2_

1
re

lu
2_

1
co

nv
2_

2
re

lu
2_

2
po

ol
2

co
nv

3_
1

re
lu

3_
1

co
nv

3_
2

re
lu

3_
2

co
nv

3_
3

re
lu

3_
3

po
ol

3
co

nv
4_

1
re

lu
4_

1
co

nv
4_

2
re

lu
4_

2
co

nv
4_

3
re

lu
4_

3
po

ol
4

co
nv

5_
1

re
lu

5_
1

co
nv

5_
2

re
lu

5_
2

co
nv

5_
3

re
lu

5_
3

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

ec
on

ds
)

Comparison of GPU and SW26010
in the forward propagation of vgg16 net

GPU
SW26010

co
nv

1_
1

re
lu

1_
1

co
nv

1_
2

re
lu

1_
2

po
ol

1
co

nv
2_

1
re

lu
2_

1
co

nv
2_

2
re

lu
2_

2
po

ol
2

co
nv

3_
1

re
lu

3_
1

co
nv

3_
2

re
lu

3_
2

co
nv

3_
3

re
lu

3_
3

po
ol

3
co

nv
4_

1
re

lu
4_

1
co

nv
4_

2
re

lu
4_

2
co

nv
4_

3
re

lu
4_

3
po

ol
4

co
nv

5_
1

re
lu

5_
1

co
nv

5_
2

re
lu

5_
2

co
nv

5_
3

re
lu

5_
3

10 -4

10 -3

10 -2

10 -1

10 0

T
im

e
(s

ec
on

ds
)

Comparison of GPU and SW26010
in the backward propagation of vgg16 net

GPU
SW26010

Fig. 9: Forward and Backward Time of VGG-16 on GPU
K40m and SW26010.

B. Results for different network structures

In Table III, we evaluate the performance of our frame-
work on complete DNN training tasks with different network
structures. We use img/sec as an indicator, which indicates the
number of images processed in one seconds. AlexNet, VGG-
16, VGG-19 [16], ResNet-50 [18] and GoogleNet [19] are
tested with batch size as 256, 64, 64, 32, 128, respectively.
Compared with 12-core CPU, SW26010 with our framework is
3.04x˜7.84x faster on five DNNs. Our framework on SW26010
outperforms K40 GPU on AlexNet with a speedup of 1.19x.
Data reading from CPU host memory to GPU device memory
through PCI-E bus accounts for over 40% time during training
of AlexNet, as calculation time is too short to hide memory
I/O overhead. In contrast, CPEs in SW26010 can directly
access memory with DMA so as to eliminate data reading
overhead. Our framework on SW26010 achieves 45% and 49%
overall performance compared with NVIDIA K40m GPU on
AlexNet, VGG-16, but with a theoretical memory bandwidth
only 44% of that of GPU. Implementations of ResNet-50
and GoogleNet with swCaffe achieve 21% and 23% overall

performance of GPU Caffe, because their convolutional layers
adopt smaller channel settings than VGG-16 and VGG-19.
Since limited memory bandwidth achieved on convolutional
layers with small channel numbers, the two networks exhibit
stronger memory-bounded properties on SW26010.

TABLE III: The performance (img/sec) of three processors on
different DNN networks

CPU NV K40m SW SW/NV SW/CPU
AlexNet 12.01 79.25 94.17 1.19 7.84
VGG-16 1.06 13.79 6.21 0.45 5.13
VGG-19 1.07 11.2 5.52 0.49 5.15

ResNet-50 1.99 25.45 5.56 0.21 2.79
GoogleNet 4.92 66.09 14.97 0.23 3.04

C. Results for scalability

Recently, works in [11], [12] have increased the mini-
batch size in data-parallel SGD without losing accuracy over
a fixed number of epochs. Large mini-batch size can lead
more possible parallelism for DNN scaling on multiple nodes,
as computing task of each node can achieve high compute-
to-communication ratio. As shown Figure 10, we scale the
AlexNet and ResNet50 to 1024 CPUs. Compared with train-
ing speed on a single node, 715.45x, 561.58x and 409.50x
speedups with 1024 nodes are achieved for AlexNet trained
with sub-mini-batch size as 256, 128, 64, respectively. 928.15x
and 828.32x speedups with 1024 nodes are achieved for
ResNet50 trained with sub-mini-batch size as 32 and 64,
respectively. Although the limit mini-batch-size of the current
large-batch method [12] for AlexNet and ResNet is 32K,
TaihuLight equipped our framework is able to benefit from
new training algorithm with larger batch-size.

Fig. 11 shows the proportion of communication time dur-
ing training on AlexNet and ResNet-50. The proportion of
communication time is 10.65% and 19.11% for ResNet-50
trained with sub-mini-batch as 32 and 64 on the scale of
1024 nodes. The proportion of communication time is 60.01%,
45.15% and 30.13% for AlexNet trained with sub-mini-batch
as 64, 128, 256 on the scale of 1024 nodes. Since the model

2 8 32 128 512
Number of CPU

1

10

100

1000

11

2

3
4
5
6
78
9

20

30
40
50
60
708090

200

300
400
500
600
700800900

Sp
ee

du
p

ideal
AlexNet, B=64
AlexNet, B=128
AlexNet, B=256

ResNet50, B=32
ResNet50, B=64

Fig. 10: Scalability of swCaffe.

2 8 32 128 512
Number of CPU

0

10

20

30

40

50

60

Co
m

m
un

ica
tio

n
Ti

m
e

in
 P

er
ce

nt
 (%

)

AlexNet, B=64
AlexNet, B=128
AlexNet, B=256

ResNet50, B=32
ResNet50, B=64

Fig. 11: Efficiency of swCaffe.

parameter size of ResNet-50 is less than AlexNet (97.7 MB
vs 232.6 MB) and more computation required for ResNet-50,
high computation-to-communication ratio accounts for better
scalability of ResNet-50.

VII. RELATED WORKS

Existing methods on accelerating basic DNN layers are
mainly focused on many-core architectures of NVIDIA GPU
and Intel Xeon Phi. Library cuDNN [9] is a widely used GPU-
accelerated library of primitives for deep neural networks. Intel
MKL-DNN [20] is a library of DNN performance primitives
optimized for Intel architectures. They both provide a set
of highly optimized building blocks intended to accelerate
compute-intensive parts of deep learning applications.

The work in [21] was first proposed to train DNN models
on a CPU-GPU hybrid HPC systems. Since then, a large
number of works have already been focused on scaling DNN
on GPU supercomputers and HPC clusters. Inspur-Caffe [22]
is an MPI-based Caffe fork that exploits parameter-server
approach with stale asynchronous gradient updates. FireCaffe
[23] discusses scaling of DNN models on a cluster of 128
GPUs connected with Infiniband interconnects. It also adopts a
allreduce-based parameter synchronization implemented with
reduction trees. S-Caffe [24] provides modern multi-GPU
clusters with a CUDA-Aware MPI runtime for reducing/broad-
casting operations and scales DNN training to 160 GPUs.

There are a variety of general DNN frameworks deployed
on HPC systems. Tensorflow [25] developed by Google is the
most famous DNN framework that operates at large scale and
in heterogeneous environments. It implements communication

using the Google RPC library. Caffe2 [26] is developed by
Facebook and built based on Caffe. CNTK [27] developed by
Microsoft. Both Caffe2 and CNTK natively support MPI for
inter-node communications. MXNet [28] support multi-GPU
training with a parameter server called PS-lite implemented
with ZeroMQ library for communication. Intel-Caffe [20] can
harness the power of Intel KNL coprocessors and supports
multi-node training by Intel MLSL (Machine Learning Scaling
Library), which is a library built on top of MPI and works
across various interconnects, like Intel Omni-Path, InfiniBand,
and Ethernet.

VIII. CONCLUSION

We share our experience on designing a parallel DNN
framework called swCaffe on Sunway TaihuLight from proces-
sor architecture and networking perspective. Highly optimized
routines for DNN layers are derived, fully taking into consid-
eration different aspects of hardware characteristics. We opti-
mize the all-reduce operation for parameter synchronization in
parallel training process in terms of both the communication
topology and the computational approach. Compared to Caffe
on NVIDIA K40m GPU, our framework on SW26010 has
competitive performance for DNNs with compute-intensive
convolution operations, such as AlexNet and VGG. Experi-
mences prove our all-reduce routine is sufficient for parallel
synchronous SGD training.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[2] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar,
Naeem Seliya, Randall Wald, and Edin Muharemagic. Deep learning
applications and challenges in big data analytics. Journal of Big Data,
2(1):1, 2015.

[3] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,
Xiaomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao,
et al. The sunway taihulight supercomputer: system and applications.
Science China Information Sciences, pages 1–16, 2016.

[4] Jiarui Fang, Haohuan Fu, Wenlai Zhao, Bingwei Chen, Weijie Zheng,
and Guangwen Yang. swdnn: A library for accelerating deep learning ap-
plications on sunway taihulight. In Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International, pages 615–624. IEEE,
2017.

[5] https://github.com/feifeibear/SWCaffe.
[6] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings
of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

[7] Zhigeng Xu, James Lin, and Satoshi Matsuoka. Benchmarking sw26010
many-core processor. In Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International, pages 743–752. IEEE,
2017.

[8] Lijuan Jiang, Chao Yang, Yulong Ao, Wanwang Yin, Wenjing Ma, Qiao
Sun, Fangfang Liu, Rongfen Lin, and Peng Zhang. Towards highly
efficient dgemm on the emerging sw26010 many-core processor. In
Parallel Processing (ICPP), 2017 46th International Conference on,
pages 422–431. IEEE, 2017.

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[10] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, number EPFL-CONF-192376, 2011.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[12] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to
32k for imagenet training. arXiv preprint arXiv:1708.03888, 2017.

[13] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural informa-
tion processing systems, pages 1223–1231, 2012.

[14] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization
of collective communication operations in mpich. The International
Journal of High Performance Computing Applications, 19(1):49–66,
2005.

[15] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. Journal of Parallel and Distributed
Computing, 69(2):117–124, 2009.

[16] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[19] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9, 2015.

[20] https://github.com/intel/caffe.
[21] Tao Wang David J. Wu Bryan Andrew Y. Ng Catanzaro Adam Coates,

Brody Huval. Deep learning with cots hpc systems. 2013.
[22] https://github.com/Caffe-MPI/Caffe-MPI.github.io.
[23] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt

Keutzer. Firecaffe: near-linear acceleration of deep neural network
training on compute clusters. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2592–2600, 2016.

[24] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi,
and Dhabaleswar K Panda. S-caffe: Co-designing mpi runtimes and caffe
for scalable deep learning on modern gpu clusters. In Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 193–205. ACM, 2017.

[25] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[26] https://github.com/caffe2/caffe2.
[27] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-

learning toolkit. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2135–
2135. ACM, 2016.

[28] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

	I Introduction
	II Background
	II-A SW26010 Many-core Processor
	II-B Network Topology of Sunway TaihuLight
	II-C DNN Training Process and Frameworks

	III Design and Implementation of DNN Framework on SW26010
	III-A Principles of Parallel Algorithm Design on SW26010

	IV Parallel design of DNN layers
	IV-A Matrix-Multiplication Layer
	IV-B Convolutional Layer
	IV-B1 Explicit GEMM transformation
	IV-B2 implicit GEMM transformation

	IV-C Tensor Transformation Layer
	IV-D Pooling Layer

	V Scaling DNN framework on the TaihuLight
	V-A Optimization for Communication of Model Parameters
	V-B Parallel I/O optimization

	VI Results
	VI-A Results for optimizations on different layers
	VI-B Results for different network structures
	VI-C Results for scalability

	VII Related Works
	VIII Conclusion
	References

