
swDNN: A Library for Accelerating Deep Learning Applications on
Sunway TaihuLight

Jiarui Fang∗†‡, Haohuan Fu∗‡, Wenlai Zhao∗†‡, Bingwei Chen∗†‡, Weijie Zheng∗†‡, Guangwen Yang∗†‡
†Department of Computer Science & Technology, Tsinghua University

∗Ministry of Education Key Lab. for Earth System Modeling, Department of Earth System Science, Tsinghua University
‡National Supercomputing Center in Wuxi

Abstract—To explore the potential of training complex deep
neural networks (DNNs) on other commercial chips rather than
GPUs, we report our work on swDNN, which is a highly-
efficient library for accelerating deep learning applications on
the newly announced world-leading supercomputer, Sunway
TaihuLight. Targeting SW26010 processor, we derive a perfor-
mance model that guides us in the process of identifying the
most suitable approach for mapping the convolutional neural
networks (CNNs) onto the 260 cores within the chip. By per-
forming a systematic optimization that explores major factors,
such as organization of convolution loops, blocking techniques,
register data communication schemes, as well as reordering
strategies for the two pipelines of instructions, we manage
to achieve a double-precision performance over 1.6 Tflops for
the convolution kernel, achieving 54% of the theoretical peak.
Compared with Tesla K40m with cuDNNv5, swDNN results in
1.91-9.75x performance speedup in an evaluation with over 100
parameter configurations.

Keywords-Deep Neural Network, Convolutional Neural Net-
work, Deep learning, Many-core Architecture

I. INTRODUCTION

Originated from the original concept proposed in the

1980s, various deep neural networks (DNN) have proven

their effectiveness in a number of application domains.

Starting from an automated recognition of images [1][2][3]

and audios [4][5], the recent technology innovations have

further expanded the territory to the some more challenging

domains, such as TV games [6], go [7], and driverless cars

[8]. With the problems involving more complicated scenarios

and the demand for a better accuracy, both the complexity

and the depth of the DNNs have been continuously increas-

ing, from tens of layers in the early competitors in ImageNet

to the current hundreds of layers. The increase in both the

number of parameters and the depth leads to a combined

explosion of the parameter space that we need to explore in

the training process, thus demanding even more computing

power for training a better machine-based intelligence.

One direct result of the increasing complexity of DNNs

and the accompanies increasing demand for computing

power, is the increasing adoption of large-scale GPU clusters

in almost all the leading companies in the corresponding

domain ([9][10]). While there are still algorithmic difficulties

for scaling the training process of one huge network to the

entire cluster with thousands of GPUs, the high density

arithmetic units on the GPUs do help a lot in the train-

ing process of various DNNs. Therefore, architecture-wise,

NVIDIA’s GPU cards still seem the only commercial option

on the current market. Although there have already been a lot

of alternative architectures that demonstrate their potential

either as high-recognized research papers (DianNao [11],

DaDianNao [12], PuDianNao [13], ShiDianNao [14]), or

secret weapons of current dominating players (google TPU),

we still have not seen any strong off-the-shelf competitors

in the arena of DNN hardware.
Sunway TaihuLight, a supercomputer that ranks the first

in the world [15] with over 100 Pflops computing capacity, is

powered by a new SW26010 many-core processor. Providing

a peak double-precision performance of 3.06 Tflops with

a power consumption of only 300 watts, SW26010 has

made TaihuLight not only the fastest but also the greenest

supercomputer in the world. In addition to its exceptional

performance and power efficiency, SW26010 also introduces

a number of unique features that could potentially help the

training process of DNNs, such as the on-chip fusion of

both management cores and computing core clusters, the

support of a user-controlled fast buffer for the 256 computing

cores, hardware-supported schemes for register communica-

tion across different cores, as well as a unified memory space

shared by the four core groups (each including 65 cores).
To provide an alternative platform for parallel DNN

training, as well as to explore various architectural features

that could lead to DNN designs with different efficiencies,

we build this library called swDNN to accelerate deep

learning applications (especially focused on the training

part) on Sunway TaihuLight. Our current work focuses on

convolutional neural network (CNN), which is one of the

most widely used DNN in various application scenarios, and

will expand to other forms of DNNs at a later stage. Our

major contributions in this work includes:

1) based on the analysis of the DNN algorithm and

the SW26010 architecture, we derive a performance

model that not only demonstrates the major factors that

could boost or limit the resulting performance, but also

guides us to a number of most suitable mappings of

the algorithm to the architecture for different problem

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.20

615

scenarios;

2) a customized register communication scheme that tar-

gets at maximizing the data reuse in the convolution

kernels, which reduces the memory bandwidth require-

ment for almost an order of magnitude, and pushes the

performance to a next level;

3) a careful design of the most suitable pipelining of

instructions that reduces the idling time of compu-

tation units by maximizing the overlap of memory

operation instructions and computation instructions,

thus maximizing the overall training performance on

SW26010.

After a systematic exploration of all these unique hard-

ware features of SW26010, our optimized swDNN frame-

work, at the current stage, can provide a double-precision

performance of over 1.6 Tflops for the convolution kernels,

achieving over 50% of the theoretical peak. The significant

performance improvements achieved from a careful utiliza-

tion of SW26010s architectural features and a systematic

optimization process demonstrate that these unique fea-

tures and corresponding optimization schemes are potential

candidates to be included in future DNN architectures as

well as DNN-specific compilation tools. Our source code is

available at [16].

II. RELATED WORKS

Training deep neural networks usually demands a huge

amount of computing resources and is extremely time and

energy consuming. Many efforts have been made by re-

searchers from both academic and industrial communities

to accelerate the training task targeting from the core

computing kernels to the entire training process, based on

high-performance computing platforms, such as those with

heterogeneous accelerators like GPUs, FPGAs, and even

customized ASICs.

GPUs have currently dominated the competition of the

HPC platforms for DNN training. NVIDIA cuDNN [9]

library provides a flexible API for deep learning workloads,

and it is neatly integrated to widely used deep learning

frameworks, such as Caffe [17], Tensorflow [18], etc. Other

works like maxDNN [19], Caffe con Troll (CcT) [20], fbfft

[21] and Winograd’s minimal filtering algorithms [22] for

CNN are focused on specific GPU architecture or specific

algorithm design and can achieve better performance in

certain cases.

FPGA-based accelerators can also provide solutions with

high performance as well as high power efficiency. Works in

[23], [24] proposed optimized design for the convolutional

kernel which achieves considerable performance with single

FPGA. To explore high performance, works in [25] and [26]

scale the design to multi-FPGA platforms. However, even

though higher power efficiency can be achieved, the overall

performance of FPGAs is limited by the total amount of

hardware computation resources.

Besides general programmable accelerators, customized

ASIC for machine learning and deep learning algorithms

is another research hot-pot and demonstrates attractive per-

formance and energy efficiency on both classification and

training tasks. DianNao [11] emphasized the impact of mem-

ory, performance and energy, designed an accelerator for

the large scale CNN and DNN, which achieved 452 GOPS

throughput in a small area with low power consumption.

DaDianNao [12] introduced a multi-chip architecture for

machine learning which is 460.65× faster than a single GPU.

PuDianNao [13] accommodated other six representative ma-

chine learning techniques along with deep neural networks.

Focusing on visual recognition, the accelerator ShiDianNao

[14] performed 30× faster than high-end GPUs.

While we see great potential in both performance and

power efficiency for FPGA and customized ASIC based

DNN solutions, GPU still remains the only commercial

option that provides training performance at the scale of

tera-flops per chip. To investigate the performance potential

of running and training DNNs on other off-the-shelf many-

core chips, in this work, we explore the possibility to support

DNN applications (with a specific focus on CNNs) on the

newly-annoucned SW26010 processor. Guided by a neat

performance model, we manage to identify the most suitable

orgnization of loops, blockings of data items, and sequence

of two pipelines of instructions, and achieve a performance

of 1.6 Tflops in double precision for the convolution kernels.

The results demonstrate the strong capability of SW26010

for performing DNN-related computations, and also the ben-

efits brought by SW26010’s unique architectural features.

III. MAPPING CNN TO SW26010: A PERFORMANCE

MODEL

A. CNN (Convolutional Neural Networks)

CNNs usually contain multiple computing layers, and

these layers can be divided as the extractor and the classifier

according to their different functions. The extractor layers,

such as convolutional layer and subsampling layer, filter the

high dimensional input images into various features. The

classifier layers, such as fully connected artificial neural

network and SVM, use these low dimensional features to

decide the categories input images belong to, or calculate

the likelihood of each possible category.

In CNN, large data is utilized for the training of the

connected weights and the filters, and the result of the

recognition on new data is obtained by the forward process

of the trained networks. Therefore, due to its large com-

puting requirement, training is a more suitable scenario for

supercomputers.

For the convenience of statement, the corresponding pa-

rameters of convolutional layer are collected in Table I. The

input is Ni images of size Ci ×Ri, and the output contains

No images of size Co ×Ro. For each input image and each

output, they are connected by a convolutional filter W with

616

Kc × Kr size. The pseudo code of a convolutional layer

can be written as that in Listing 1. In most of CNNs, the

convolution operator takes the majority of computing time

(over 90%). This paper will focus on the implementation on

the convolution operator.

Table I: Parameters of convolutional layers

Parameter Meaning
Ni Number of input feature maps
No Number of output feature maps
Ri Height of input image
Ci Width of input image
Ro Height of output image
Co Width of output image
Kr Height of filter kernel
Kc Width of filter kernel

Listing 1: Pseudo code of a convolutional layer

f o r (cB = 0 ; cB < B ; ++cB)
f o r (cCo = 0 ; cCo < Co ; ++cCo)

f o r (cRo = 0 ; cRo < Co ; ++cRo)
f o r (cNi =0; cNi < Ni ; ++cNi)

f o r (cNo = 0 ; cNo < No ; ++cNo)
f o r (cKr = 0 ; cKr < Kr ; ++cKr)

f o r (cKc = 0 ; cKc < Kc ; ++cKc)
o u t [cRo] [cCo] [cNo] [cB] += i n [cRo+cKr] [cCo+cKc] [cNo] [cB]
∗ f i l t e r [cKc] [cKr] [cCo] [cRo] ;

B. The SW26010 Many-Core Processor

As mentioned above, the world-leading performance and

efficiency of Sunway TaihuLight is mainly enabled by

China’s homemade SW26010 many-core processor [15].

As shown in Fig. 1, each processor consists of four core
groups (CGs). Each CG includes 65 cores: one management
processing element (MPE), and 64 Computing Processor
Element (CPEs), organized as an 8 by 8 mesh. The MPE

and CPE are both complete 64-bit RISC cores but serve

different roles during the computation. The MPE, support-

ing the complete interrupt functions, memory management,

superscalar, and out-of-order issue/execution, is good at

handling the management, task schedule, and data communi-

cations. The CPE is designed for the purpose of maximizing

the aggregated computing throughput while minimizing the

complexity of the micro-architecture.

Each CG connects to its own 8GB DDR3 memory through

the Memory Controller (MC), shared by the MPE and the

CPE mesh. The on-chip network (NoC) connects four CGs

with System Interface (SI). Memory of four CGs are also

connected through the NoC. Users can explicitly set the size

of each CG’s private memory space, and the size of the

memory space shared among the four CGs.

Compared with the other multi-core or many-core pro-

cessors, the SW26010 design demonstrates a number of

different features: (i) As for the memory hierarchy, while

the MPE adopts a more traditional cache hierarchy (32-KB

L1 instruction cache, 32-KB L1 data cache, and a 256-KB

L2 cache for both instruction and data), each CPE only

provides a 16-KB L1 instruction cache, and relies on a 64KB

Local directive Memory (LDM) (also known as Scratch Pad
Memory (SPM)) as a user-controlled fast buffer. This user-

controlled ’cache’, while increases the programming chal-

lenges for an efficient utilization of the fast buffer, provides

the option to implement a customized buffering scheme

that can improve the overall performance significantly in

certain cases. (ii) Inside each CPE mesh, we have a control

network, a data transfer network (connecting the CPEs to

the memory interface), 8 column communication buses, and

8 row communication buses. The 8 column and row commu-

nication buses enable fast register communication channels

across the 8 by 8 CPE mesh, providing an important data

sharing capability at the CPE level. (iii) Each CPE includes

two pipelines (P0, and P1) for the instruction decoding,

issuing, and execution. P0 is for floating-point operations,

and both floating-point and integer vector operations. P1 is

for memory-related operations. Both P0 and P1 support

integer scalar operations. Therefore, identifying the right

form of instruction-level parallelism can potentially resolve

the dependences in the instruction sequences, and further

improve the computation throughput.

C. The challenges for mapping CNN to SW26010

According to definition of basic convolution, there are two

major approaches to implement multi-channel convolution

operations. One is the spatial-domain based methods that

directly sum up the products of input image pixel values with

corresponding filter elements to obtain output pixel values

[22]. In addition, the summation operations can be organized

into General Matrix-Multiplication (GEMM) by lowering

the convolutions into a matrix multiplication [9], [19]. The

other one is the frequency-domain based methods that can

be finished with dot product operations after transforming

the input images and filter kernels from spatial domain to

frequency-domain with FFT operators[21].

As the FFT used in frequency-domain based methods

has higher requirements for the memory bandwidth and

involves global communication from different processing

threads, the spatial-domain based methods seem a better fit

to the SW26010 many-core architecture. Therefore, in this

work, we design our memory access and computing patterns

for convolution operation of CNNs based on spatial-domain

method.

According to the above analysis of both the algorithm

and the architecture, we can identify the following major

factors that may limit the performance of CNN on SW26010:

(i) The relatively low memory bandwidth, especially when

compared with the high computing performance. The DDR3

memory interface provides a peak bandwidth of 36 GB/s

for each CG (64 CPEs), a total bandwidth of 144 GB/s for

the entire processor. The NVIDIA K80 GPU, with a similar

double-precision performance of 2.91 Tflops, provides an

aggregated memory bandwidth of 480 GB/s. In contrast,

617

Core Group 2

Data Transfer
Network

MPE 8*8 CPE
Mesh

PPU

iMC

Memory

Core Group 0

MPE8*8 CPE
Mesh

iMC

PPU

Memory

Core Group 1

MPE8*8 CPE
Mesh

PPU

Core Group 3 iMC

Memory

MPE 8*8 CPE
Mesh

PPU

iMC

Memory

NoC

Computing
Core

LDM

Column
Communication Bus

Control
Network

Registers

Row
Communication

Bus

Transfer Agent (TA)

Memory Level

LDM Level

Register Level

Computing Level

8*8 CPE Mesh

Figure 1: The general architecture of the SW26010 many-core processor.

SW26010’s memory bandwidth can hardly match the 3.06

Tflops double-precision performance and can easily fall

into memory-bound cases. While the LDM of each CPE

provides an option for manual caching optimizations, the

DDR3 interface generally requires aligned memory access

patterns (in blocks of 128 bytes) to achieve close to optimal

bandwidth. Therefore, while CNN is generally considered

as a computing-intensive kernel, we still need a careful

memory access scheme to alleviate the memory bandwidth

constraints. (ii) The algorithm of CNN involves all-to-all

connections between inputs, filter kernels, and outputs. As

a result, a parallel CNN design generally requires frequent

data communication among different processing elements.

However, in SW26010, the CPEs do not have a shared buffer

for such frequent data communications. Therefore, we have

to rely on a fine-grained data sharing scheme based on row

and column communication buses in the CPE mesh.

D. Performance model

Based on the above analysis of both the CNN algorithm

and the Sunway processor architecture, we can easily see

that the memory bandwidth becomes the major bound in

our process of identifying the best mapping of CNN to

SW26010. To further quantize the limiting factors at dif-

ferent levels of the memory hierarchy, we derive a three-

level (register (REG), local data memory (LDM), memory

(MEM)) performance model to guide us to the most suitable

way of design convolution implementation in a many-core

architecture, as shown in Fig. 2. In different scenarios, the

CPE mesh can access the data items either directly from the

global memory, or from the three-level (REG-LDM-MEM)

memory hierarchy. In either cases, we estimate the minimum

requirement memory bandwidth (denoted as RBW) by

the roofline model [27] to support the peak floating-point

throughput for each CG. Because the amount of computation

increases with the square of the input data in convolution

operations, the actual computing performance can then be

estimated based on the square of the ratio between RBW
and the actual measured memory bandwidth (denoted as

MBW) at different levels. If the RBW is smaller than

the MBW at the corresponding level, then the memory

bandwidth is no longer the performance bound.
In the first case, the CPE mesh can directly access the data

items from MEM by using gload instructions (performance

estimated in the middle column of Fig.2). Such a direct

memory access pattern does not take advantage of any

possible data sharing, thus requiring the largest bandwidth of

RBWdirectMEM = 139.20 GB/s in such case. Moreover, the

actual interface of gload only provides a physical bandwidth

of 8 GB/s, leading to an extremely low utilization of the

floating-point computing capability((8/139.2)2=0.32%). In

the second case, the CPE mesh accesses the data items

through the MEM-LDM-REG hierarchy (performance es-

timated in the right column of Fig. 2), i.e. we apply DMA

operations to load data into LDM first, and then perform

load and store instructions to move data into the register

file for the computation afterwards. By going through two

extra levels of controls on LDM and register, we can then

achieve effective data sharing, thus reducing the actual data

accesses that we need to make from the global memory.

Similarly, at each level, we estimate the required bandwidth

to support the maximum throughput of computing, and com-

pare the required bandwidth to the actual physical bandwidth

provided, so as to derive the estimated performance of the

CNN kernel. In both cases, we also introduce a concept of

execution efficiency (EE) to account for the cases that the

CPE is not providing the maximum level of floating-point

throughput (due to the floating-point operation pipeline stalls

or the pipeline is occupied with non-computing instructions

and non-vectorized operations).
The MBWMEM→LDM between the global memory and

the LDM is not a constant value and is variant with the size

of continuous memory access blocks of one CPE. We wrote

a micro-benchmark on one CG to measure the effective

618

8 by 8 CPE mesh
Registers

LDM

Peak Performance per CG݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ

46.4GB/s
8 GB/s

Considering Execution Efficiency (EE)݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ · ܧܧ
Considering LDM − REG Exchange݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ · ·ܧܧ ݉݅݊ 1, ܤ46.4ܴ ܹெ→ோாீ

ଶ

Peak Performance per CG݂ܲ݁ݎ = 742.4 ConsideringExecutionݏ݈݂ܩ Efficiency (EE)݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ · ܧܧ

Considering Direct Memory Access݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ · ܧܧ ·݉݅݊ 1, ܤ8ܴ ெܹாெ→ோாீ
ଶ

Direct Memory Access REG-LDM-MEM

Considering MEM− LDM Exchange݂ܲ݁ݎ = 742.4 ݏ݈݂ܩ · ·ܧܧ ݉݅݊ 1, ܤ46.4ܴ ܹெ→ோாீ
ଶ ·

݉݅ ݊ ܤܯ,1 ெܹாெ→ோாீܴܤ ெܹாெ→ெ
ଶMain Memory

ܤܯ ெܹாெ→ோாீ

Figure 2: The performance model of our CNN kernel design

on one CG of SW26010.

DMA bandwidth and present the results in Table II, in

which Size(Bye) indicates the sizes of continuous memory

access data block of one CPE. We can see that the effective

bandwidth for DMA load and store ranges from 4 GB/s to

36 GB/s. In general, a higher bandwidth is achieved when

using a block size larger than 256B and aligned in 128B.

Therefore, we should arrange the leading blocking size of

data layouts to satisfy these constraints when design our

convolution operations.

Table II: Measured DMA Bandwidths (GBps) on 1CG

Size(Byte) Get Put Size(Byte) Get Put

32 4.31 2.56 512 27.42 30.34
64 9.00 9.20 576 25.96 28.91
128 17.25 18.83 640 29.05 32.00
192 17.94 19.82 1024 29.79 33.44
256 22.44 25.80 2048 31.32 35.19
384 22.88 24.67 4096 32.05 36.01

Another design issue we need to consider is the way to

scale the training process across four CGs. With the support

on partitioning between private memory space and shared

memory space across the four CGs in one SW26010, we

can partition output images into four parts along the row,

and assign each CG to process one fourth of the output

images. Our experiments demonstrate that such a partition

scheme can generally achieve near linear scaling among the

four CGs in one processor.

IV. LDM-RELATED OPTIMIZATIONS

A. LDM Blocking

Due to extremely low efficiency of the direct memory

access mode, we adopt the REG-LDM-MEM memory ac-

cess in our CNN design. As described in Section III-D,

When using such memory access mode, data should be

explicitly loaded into LDM using DMA requests first.

An LDM blocking strategy is adopted to partition the

input/output images and filter kernels into smaller blocks.

Such a blocking strategy helps to keep convolution data

in the fast buffer for future data reuse. As shown in

Listing 1, a naive implementation of convolution is with 7

for loops (B,Ni, No,Kr,Kc, Co, Ro). Loop scheduling and

loop blocking can be applied to these 7 loops. The following

insights will guild us towards more efficient designs.

• We can not apply blocking to every dimension due to

the limited size of LDM, although blocking on each

loop dimension will decrease the RBWMEM−LDM .

We should choose the dimension that leads to the most

significant reduction of RBW for blocking first.

• The DMA bandwidth between memory and LDM will

be affected by the size of leading dimension of loops.

We should choose the loop scheduling plan which

makes leading dimension large enough to ensure a

better DMA bandwidth.

• To increase data reuse in LDM, we should arrange the

DMA operations at outer loops as far as possible.

Based on such a design philosophy, we can derive a serial of

algorithmic transformations, to achieve an improved effec-

tive memory bandwidth, and a resulting improved computing

performance.

A image-size-aware version is illustrated in Algorithm 1.

Its RBW of MEM-LDM is illustrated in Equation 1, where

bB and bCo
is blocking size on B and Co dimensions; T is

the peak performance; DS is the size of data type. A batch-

size-aware version is illustrated in Algorithm 2. Its RBW
of MEM-LDM is illustrated in Equation 2.

RBWMem→LDM =
(No + bCobB)DS

2bCo
bBNo/T

=
(1
bCobB

+ 1
No

)DS

2/T
(1)

Algorithm 1 Image Size Aware Version

1: for bBStart = 0 : bB : B do
2: for RoStart = 0 : Ro do
3: for CoStart = 0 : bCo : Co do
4: for cKr = 0 : Kr do
5: for cKc = 0 : Kc do
6: DMA get Di ← Ni×bB channels input images (CoStart+

cKc : CoStart + cKc + bCo,RoStart + cKr) start at
bBStart.

7: DMA get W ← Ni×No channels filter kernels (cKc, cKr)
start at bBStart

8: Do+ = Di × W
9: end for

10: end for
11: DMA put bB ×No channels output images(CoStart : CoStart +

bCo,RoStart) ← Do

12: end for
13: end for
14: end for

For both versions, a large output channel No will reduce

the RBW . If the batch size is large enough to reduce the

RBW to a lower level, we can adopt the batch-size-aware

version. Otherwise, we can perform blocking on the column

619

dimension with the image-size-aware version.

RBWMem→LDM =
(B +KcNo)DS

2KcBNo/T
=

(1
KcNo

+ 1
B)DS

2/T
(2)

Algorithm 2 Batch Size Aware Version

1: for Costart = 0 : bCo : Co − 1 do
2: for cRo = 0 : Ro − 1 do
3: for cKr = 0 : Kr − 1 do
4: cRi = cRo + cKr

5: for cCi = Costart : Costart + bCo + Kc − 1 do
6: DMA get Di ← Ni × B channels of input images(cCi, cRi)
7: for cKc = 0 : Kc − 1 do
8: DMA get W ← Ni × No channels of filter kernels

(cKc, cKr)
9: cCo = cCi − cKc

10: if cCo >= Costart and cCo < Costart + Kc then
11: Do(cCo)+ = W × Di

12: end if
13: end for
14: end for
15: end for
16: DMA put Ni × B channels of output images (Costart : Costart +

bCo, cRo) ← Do

17: end for
18: end for

Double Buffering is adopted to overlap DMA with com-

puting. While the data is computed in one LDM buffer, the

data to be used at next iteration is loaded into another LDM

buffer by DMA. In our above descriptions, blocking is not

performed on Ni and No dimensions. However, if LDM

space is not enough for large Ni or No, we still need to apply

loop blocking on these dimensions. Conversely, if free LDM

space is sufficient, we can promote the DMA operation to

outer loop to further reduce RBW . For Algorithm 1, we

can promote the DMA operation at line 6 to line 4 and read

input image tile of size (Costart : Costart+Kr+ bCo). For

Algorithm 2, we can promote the DMA operation at line 8

to line 4 and read filter tile of size (cKc, :).

V. REGISTER-RELATED OPTIMIZATIONS

A. Register Communication

Both Algorithm 1 (lines 8) and Algorithm 2 (line 10)

perform a general matrix-matrix multiplication (GEMM)

operation on data in LDM. One unique feature of the

SW26010 architecture is the register communication mech-

anism inside the 8×8 CPEs mesh, which is designated

to support data transfer between 8 CPEs within the same

row/column. We can optimization LDM-GEMM with the

register communication provided by SW26010.

8 row communication buses and 8 column communication
buses form the data exchange channels for the 8 by 8 CPE

mesh. Register-level communication is achieved by a pair of

Put and Get operations through row/column communication
buses. The sender CPE uses the Put operation to send a

256-bit register file to the Transfer Buffer of a receiver CPE,

while the receiver CPE uses the Get operation to fetch the

Time 0 Time 1 Time 2 Time 3

Figure 3: Schematic of register communication on CPEs for

matrix multiplication.

256-bit data from the Transfer Buffer to the local general-

purpose register file. A producer-consumer strategies is im-

plemented to ensure multi-Put and multi-Get operations. In

addition to Put and Get operations, SW26010 also provides

mechanisms to broadcast and multicast 256-bit data items.

We design a data distribution plan for images and filters

on the 8× 8 CPE mesh to ensure no duplicate data stay

on different CPEs and minimize MEM-LMD bandwidth

requirement. As for input images, the Ni/8 channels of

images are resident on a column of mesh. Each CPE of 8

CPEs on one column have 1/8 batchs of image pixels. As for

filters, the No/8 channels of output channels are resident on

a column of mesh. Each CPE of 8 CPEs on one column have

Ni/8 input channels of filter elements. No duplicated data

are resident on two different CPEs. Therefore, each core can

finish a convolution operation with 1/64 data and can achieve

a partial result. To get a finial result, each CPE requires data

on other cores. With this plan, the required data of one CPE

is resident on the CPEs of the same column and the same

row and we can use register communication to fetch remote

data from local transfer buffers to local GPRs.

We demonstrate the basic idea in a simplified 4 by 4 CPE

mesh, shown in Figure 3. In Figure 3, input image Di, filter

W and output image Do are divided into 4×4 parts, each

CPE has the corresponding input, filter and output data.

That is, for each (i, j), CPE(i, j) owns Di(i, j), W (i, j)
and Do(i, j). Initially, the values in Do are set to 0. For the

statement convenience, the following shows the calculation

of Do(2, 1) using register communication. The value of

Do(2, 1) relies on the row 2 values of filter W (W (2, 0),
W (2, 1), W (2, 2) and W (2, 3)) and the column 1 values of

input image Di (Di(0, 1), Di(1, 1), Di(2, 1) and Di(3, 1)).
At step 0, each column 0 CPE (in yellow) sends its own filter

W value to corresponding CPE in column 1 ∼ 3 though

row communication bus, and each row 0 CPE (in green)

sends its input Di data to corresponding CPE in row 1 ∼ 3
via column communication bus. For example, CPE(0, 0)
sends W (0, 0) to CPE(0, 1), CPE(0, 2) and CPE(0, 3), and

sends Di(0, 0) to CPE(1, 0), CPE(2, 0) and CPE(3, 0). After

receiving, each CPE calculate the matrix multiplication of

the received W and Di, and the result is added to Do values

620

it owns. For Do(2, 1), CPE(2, 1) currently received W (2, 0)
and Di(0, 1), and now Do(2, 1) = W (2, 0) × Di(0, 1).
Next at step 1, column 1 CPEs send W to other columns,

and row 1 CPEs send Di to other rows. Now Do(2, 1) =
W (2, 0) × Di(0, 1) + W (2, 1) × Di(1, 1). Next time 2,

column 2 sends W , row 2 sends Di, and Do(2, 1) =
W (2, 0)×Di(0, 1)+W (2, 1)×Di(1, 1)+W (2, 2)×Di(2, 1).
Finally, at step 3, column 3 sends W , row 3 sends Di, and

CPE(2, 1) owns the complete value of Do(2, 1). Similar

to CPE(2, 1), other CPE(i, j) has already computed the

corresponding Do(i, j) after four steps.

B. Register Blocking

Register Blocking can further improve the data reuse in

registers, thus reducing required bandwidth between LDM

and registers. There exist two blocking different approaches

at the register level. As shown in Figure 4, one way usually

adopted by direct convolution plan is that we perform a 2D

spatial-convolution on Ci and Ri dimensions in registers;

the other way adopted by blocked-GEMM convolution plan

is that we perform a 2D spatial-convolution on B and No

dimensions in registers.

In the first way, we fix a rbKr × rbKc filter kernel in

registers and load a block of rbCi
×rbRi

input image pixels

from LDM to register for convolution. After convoluted, the

results are stored to rbCo
×rbRo

(rbCo
= rbCi

−Kc+1 and

rbRo
= rbRi

−Kr+1) output pixels in LDM from registers.

In the second way, we load rbB input pixels and rbNi filter

data from LDM into registers and fix rbBrbNo output pixels

in registers for updating iteratively. Equation 3 illustrates

RBW for one CPE of the first way. It is hard to lower

the RBW , because the RBW is mainly dependent on rbKr

and rbKc , the maximum values of which are limited by the

network parameter Kr and Kc. That can explain why we do

not adopt a direct convolution plan at beginning. Equation 4

illustrates RBW of the second way. In contrast, the RBW
changes with register block input pixels rbB and rbNo

. By

blocking on B and No rather than dimensions of filter

kernel size, we enable register more flexible for different

parameter configurations. We can use such blocking plan for

our register-communication-based GEMM implementation.

RBWLDM→Reg =
(rbRirbCi + rbbCorbRo)DS

2rbKr
rbKc

rbCo
rbRo

/T
(3)

RBWLDM→Reg =
(rbB + rbNo

)DS

2rbBrbNo
/T

(4)

C. Vectorization-Oriented Data Layout

Both the MPE and CEPs in each CG support 256-bit

vectorized instructions, which enable 4 simultaneous double-

precision or single-precision floating-points operations. We

use vldr/vldc(vldder/vlddec) primitives, which are equivalent

filter outputinput

Figure 4: Two register blocking plans with the data blocked

in registers are shown in dashed boxes. The upper convo-

lutes input images on Ci and Ri dimensions. The lower

convolutes input images on B and No dimensions.

input imagesoutput imagesfilters

Figure 5: Vectorization and register blocking for Matrix-

Matrix Multiplication. Dotted boxes illustrate the data

blocked in registers.

to vload+putr/putc(vldde+putr/putc), to load a vector data

from LDM to registers and then broadcast it to transfer

buffers of other CPEs on the same row/column. The prim-

itive getr/getc to load vector data from transfer buffer into

registers. For the convolution operation in Algorithm 1 (line

8) and Algorithm 2 (line 11), our vectorization plan is shown

in Figure 5. Four floating-point image pixels are packed into

a vector structure and are loaded from LDM into registers.

One filter element is loaded from LDM and is replicated

in quadruples to form a vector structure in register with

vldde primitive. Vectorized multiply-add vfmad operation

is performed with them afterwards. In addition, we design

the following data layouts for vectorization:

• For the image-size-aware version, the 4D input and

output images are organized as (4, C,R,N,B/4);
• For the batch-size-aware version, the 4D input and

output images are organized as (4, B/4, C,R,N).

We choose an appropriate blocking size (rbB , rbNo
) for

Equation 4 to ensure the RBWLDM→Reg is less than 46.4

GB/s. Because we require to load a single float-point filter

elements and extend it into a SIMD vector, it leads to 4×
bandwidth cost to load rbNo

filter elements. As shown in

Equation 5, a reasonable parameter setting is rbB=16 and

rbNo
=4, which leads the required bandwidth to 23.2 GB/s

621

(far less than architecture bandwidth 46.4 GB/s).

RBW SIMDLDM→Reg =
(rbB + 4× rb′No

)DS

(2rbBrbNo)/T

=
(16 + 4× 4)× 8Byte

(2× 16× 4)/(1.45GHz ∗ 8) = 23.2GB/s < 46.4GB/s

(5)

VI. INSTRUCTION REORDERING

Figure 6: Instruction reordering for innermost loop. The

left is original assembly code and the right is rescheduled

assembly code.

A. Instruction Pipelines

Each CPE consists of two execution pipelines, called P0
and P1. Both of them can handle some basic scalar integer

operations. Besides, floating-point operations and vector

operations can only be handled on P0. Control transfer

operations, load/store and register communication operations

for both scalar and vector can only be handle on P1. The

two execution pipelines share an Instruction Decoder (ID),

and an instruction queue is maintained in the ID stage. In

each cycle, two instructions in the front of the queue are

checked by the ID and can be issued into two pipelines

simultaneously if all the following conditions are satisfied:

1) Both instructions have no conflicts with the unfinished

instructions issued before.

2) The two instructions have no Read After Write (RAW)

or Write After Write (WAW) conflicts.

3) The two instructions can be handled by two execution

pipelines separately.

For algorithms with floating-point operations as core

computation, maximizing the efficiency of P0 can improve

the overall performance. Theoretically, with P1 handling

data load/store, control transfer and other scaler integer

operations, we can make P0 fully-pipelined for floating-

point operations during the core computing process, which

requires an orchestrated instruction flow. However, current

optimization tools in the Sunway C compiler can not provide

an optimized solution. Therefore, we propose an optimiza-

tion process for double-pipeline instruction reordering to

explore higher efficiency for the core computing process.

B. Instruction Reordering Optimization

A GEMM kernel calculating C+ = A×B in the left side

of Figure 6, the execution time of the original instruction

flow is 26 (8vload + 1cmp + 1bnw + 16vmad = 26) cycles

per iteration. The innermost loop contains Ni/8 iterations.

Under optimal circumstances, P0 only executes 16 vfmad
instructions every iteration. Therefore, the execution effi-

ciency now is 16/26 = 61.5%. Based on the original

instruction flow, the following three steps can guide our

further optimizations to improve the execution efficiency.

1) Dependence analysis: The load operation has a 4-

cycle latency, so that the load operation should be issued

4 cycles before the data is used. In order to issue the

vfmadd instruction as early as possible, we should load

A[0] and B[0] first, then load A[1]-A[3] and B[1]-B[3]
sequentially. The latency of vfmadd is 7 cycles, but there

is no data dependency on C in each iteration, so the vfmadd
instructions could be issued into P0 in a fully-pipelined

sequence without reordering.

2) Intra-loop pipelining and reordering: Based on the

above analyses, we can hide data load operation with vf-
mads in one loop. We first move the load operation of

B[0] forward to cycle 1. The load and the address update

operations of A[0]-A[3] can be issued at cycle 2-5. Then

the first vfmadd operation can be issued at cycle 6 (4 cycles

after loading A[0]). The load and address update operations

of B[1]-B[2] can be issued to P1 while P0 is handling the

first 4 vfmadd operations at cycle 6-11. The loop control

operations can also be handled by P1, so each of them can

be issued together with a vfmadd operation.

3) Inter-loop pipelining and reordering: After intra-loop

pipelining and reordering, there is no floating-point oper-

ations in the first 5 cycles due to the data dependency

constraint. Considering a multi-iteration process, when the

total iteration number is more than 2, we can issue the load

instructions of A[0]-A[3] and B[0] to P1 together with the

vfmadd instructions in the previous iteration. As shown in

the right side of Figure 6, we need to design an initial

section before the loop starts and an exit section for the

last iteration. In this case, the initial section takes 5 cycles,

each iteration takes 17 cycles and the exit section takes 16

cycles. The execution efficiency with innermost iterations is

622

Figure 7: Double-precision performance results of our convolution kernels with different (Ni, No) ranging from (64, 64) to

(384, 384), compared with the K40m GPU results with cuDNNv5. (B = 128, output image =64× 64, filter = 3× 3)

Figure 8: Test scripts for swDNN performance evaluations.

(Ni/8 ∗ 16)/(5 + (Ni/8− 1) ∗ 17 + 16) and larger Ni will

get higher execution efficiency.

Assembly Code1 from [16] shows the final instruction

flow, where we apply register package (packing 4 long or 8

int into vector structure) to innermost loop to reduce required

register number and unroll the two if − else statements

for thread column and row ids in the outer loop to reduce

overhead of loop control operations and ids storage.

VII. PERFORMANCE

To evaluate the performance of our swDNN, we adopt

different loop scheduling and blocking strategies according

to the performance model for different parameter configu-

rations with code from [16]. Because the current arithmetic

architecture does not allow an easy doubling or even qua-

drupling of the performance by using single or even half

precision, we use double-precision for performance evalua-

tion. Figure 7 summarizes the double-precision performance

results of our convolution kernels for different input and

output image channels parameter configurations, compared

with the GPU results measured using cuDNNv5.1 on K40m.

The parameter configurations of numbers 1 to 21 are gen-

erated from the left script in Figure 8 and configurations of

numbers 22 to 101 are generated from the center script of

Figure 8. In most cases, we see a convolution performance

above 1.6 Tflops and achieve speedup ranging from 1.91x

to 9.75x compared with cudnnv5.1.

Figure 9 shows the performance of using different filter

kernel sizes ranging from 3× 3 to 21× 21. The parameter

configurations of numbers 1 to 30 are generated from the

right script of Figure 8.

1https://github.com/THUHPGC/swDNN/tree/master/src/asm

Figure 9: Double-precision performance results of our con-

volution kernels for different filter sizes ranging from 3× 3
to 21× 21, compared with the K40m GPU with cuDNNv5.

(B = 128, output image = 64× 64)

We achieve over 54% efficiency for most of parameter

configurations, while the best efficiency on K40m is around

40% but only for a small set of parameter configurations.

Moreover, not like cuDNN, our program is stable under

different parameter configurations.

Table III: Performance Model Evaluation

Plan Kc bB bCo Ni No RBW MBW mdl meas
img 3 32 16 128 128 29.0 21.9 368 350
img 3 32 8 128 256 23.2 18.2 397 375

batch 3 - - 256 256 27.1 21.2 422 410
batch 3 - - 128 384 25.7 21.2 407 392

Table III demonstrates the measured performance results

(meas) of our CNN kernel design on one CG after applying

image-aware (img) and batch-aware (batch) loop transfor-

mation strategies, compared to the estimated modeled results

(mdl) given by our performance model. The comparison be-

tween the measurement and our performance model shows a

reasonable match, thus proving that our performance model

623

has successfully identified the major factors that determine

the CNN performance on SW26010, and provided useful

guidance in our optimization process.

VIII. CONCLUSION

This paper reports our efforts on designing and building

swDNN, a library that supports efficient DNN implementa-

tion on the newly announced Sunway TaihuLight supercom-

puter. To achieve an efficient mapping of the DNN kernels

(specifically focusing on CNN kernels in this work), we

derive a performance model that guide us in the design

and optimization process that targets on a CNN solution

that can maximize the utilization of both computing and

memory resources of the SW26010 many-core processor.

Based on the performance model, we then apply a series

of optimization schemes, including LDM-oriented algo-

rithmic transformations, customized register communication

schemes, as well as reordering of the instruction sequence

for the two pipelines. The resulting solution is capable of

providing double-precision convolution performance around

1.6 Tflops. Compared with the GPU platforms, although the

memory bandwidth of SW26010 processor (128 GB/s) is

only half of the K40 GPU (240 GB/s), in double precision

scenarios, we increase the computational efficiency from

40% (results measured using cuDNNv5) to 54%.

IX. ACKNOWLEDGEMENT

This work was supported in part by the National Key

R&D Program of China (Grant No. 2016YFA0602200), by

the National Natural Science Foundation of China (Grant

No. 4137411, 91530323) and by the China Postdoctoral

Science Foundation (No. 2016M601031).

REFERENCES

[1] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European Conference on
Computer Vision, pages 818–833. Springer, 2014.

[2] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[3] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned
face representations are sparse, selective, and robust. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2892–2900, 2015.

[4] Geoffrey Hinton, Li Deng, et al. Deep neural networks for
acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[5] George E Dahl, Dong Yu, Li Deng, and Alex Acero.
Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE Transactions on
Audio, Speech, and Language Processing, 20(1):30–42, 2012.

[6] Volodymyr Mnih, Koray Kavukcuoglu, et al. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[7] David Silver, Aja Huang, et al. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–
489, 2016.

[8] NVIDIA. Nvidia tegra drive px: Self-driving car computer.
http://www.nvidia.com/object/drive-px.html, 2015.

[9] Sharan Chetlur, Cliff Woolley, et al. cudnn: Efficient primi-
tives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012.

[11] Tianshi Chen, Zidong Du, et al. Diannao: A small-footprint
high-throughput accelerator for ubiquitous machine-learning.
In ACM Sigplan Notices, volume 49, pages 269–284. ACM,
2014.

[12] Yunji Chen, Tao Luo, Shaoli Liu, et al. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 609–622. IEEE Computer Society, 2014.

[13] Daofu Liu, Tianshi Chen, et al. Pudiannao: A polyvalent
machine learning accelerator. In ACM SIGARCH Computer
Architecture News, volume 43, pages 369–381. ACM, 2015.

[14] Zidong Du, Robert Fasthuber, et al. Shidiannao: shifting
vision processing closer to the sensor. In ACM SIGARCH
Computer Architecture News, volume 43, pages 92–104.
ACM, 2015.

[15] Haohuan Fu, Junfeng Liao, et al. The sunway taihulight
supercomputer: system and applications. Science China
Information Sciences, pages 1–16, 2016.

[16] https://github.com/THUHPGC/swDNN.
[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, et al. Caffe:

Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on
Multimedia, pages 675–678. ACM, 2014.

[18] Martın Abadi, Ashish Agarwal, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[19] Andrew Lavin. maxdnn: an efficient convolution kernel for
deep learning with maxwell gpus. arXiv:1501.06633, 2015.

[20] Stefan Hadjis, Firas Abuzaid, Ce Zhang, and Christopher Ré.
Caffe con troll: Shallow ideas to speed up deep learning. In
Proceedings of the Fourth Workshop on Data analytics in the
Cloud, page 2. ACM, 2015.

[21] Nicolas Vasilache, Jeff Johnson, at al. Fast convolutional
nets with fbfft: A gpu performance evaluation. arXiv preprint
arXiv:1412.7580, 2014.

[22] Andrew Lavin. Fast algorithms for convolutional neural
networks. arXiv preprint arXiv:1509.09308, 2015.

[23] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, et al. Opti-
mizing fpga-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
pages 161–170. ACM, 2015.

[24] Jiantao Qiu, Jie Wang, et al. Going deeper with embedded
fpga platform for convolutional neural network. In Proceed-
ings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 26–35. ACM, 2016.

[25] Naveen Suda, Vikas Chandra, et al. Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional
neural networks. In Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
pages 16–25. ACM, 2016.

[26] Chen Zhang, Di Wu, Jiayu Sun, at al. Energy-efficient
cnn implementation on a deeply pipelined fpga cluster. In
Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, pages 326–331. ACM, 2016.

[27] Williams S, Waterman A, Patterson D. Roofline: an insight-
ful visual performance model for multicore architectures[J].
Communications of the ACM, 2009, 52(4): 65-76.

624

